Belnap, J. and Gardner, J.S., 1993. Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Naturalist, 53: 1. 40-47.
Castle, S.C., Morrison, C.D. and Barger, N.N., 2011. Extraction of chlorophyll a from biological soil crusts: A comparison of solvents for spectrophotometric determination. Soil Biol Biochem 43: 853–856.
Chen L., Rossi F., Deng S., Liu Y., Wang G., Adessi A. and De Philippis R., 2014. Macromolecular and chemical features of the excreted extracellular polysaccharides in induced biological soil crusts of different ages. Soil Biology and Biochemistry, 78: 1-9.
Fattahi, S.M., Soroush, A. and Huang, N., 2020. Wind erosion control using inoculation of aeolian sand with cyanobacteria. Land Degraded Development, 31(15): 1-13.
Etemadifar, Z. and Derik Vand, P., 2014. The biology of cyanobacteria. Isfahan University Press, Isfahan, 237p.
Huixia, P., Zhengming, Ch., Xuemei, Zh., Shuyong, M., Xiaoling, Q. and Fang, W., 2007. A study on an oligotrophic bacteria and its ecological characteristics in an arid desert area. Science in China Series D: Earth Sciences, 50: 128-134.
Li, D., Hu, Ch. and Liu, Y., 2014. Spatial heterogeneity of cyanobacteria-inoculated sand dunes significantly influences artificial biological soil crusts in the Hopq Desert (China), Environmental Earth Sciences, 71: 245-253.
Malam Issa, O., Le Bissonnais, Y., Defarge, Ch., Marin, B., Duval, O., Bruand, A., D'Acqui, L.P., Nordenberg, S. and Annerman, M., 2007. Effect of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant and Soil, 1-19.
Miralles, I., Lazaro, R., Sanchez-Maranon, M., Soriano, M. and Ortega, R., 2020. Biocrust cover and successional stages influence soil bacterial composition and diversity in semiarid ecosystems. Science of the Total Environment, 709: 1-19.
Mungai, G., Rossi, F., Felde, V.J.M.N.L., Colesie, C., Budel, B., Peth, S., Kaplan, A. and De Philippis, R., 2018. The potential of the cyanobacterium Leptolyngbya ohadii as inoculum for stabilizing bare sandy substrates. Soil biology and Biochemistry, 127: 318-328.
Nowruzi, B., Sarvari, G. and Blanco, S., 2020. The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49: 1-14.
Pluis, J.L.A. and de Winder, B., 1989. Spatial patterns in algae colonization of dune blowouts. Catena, 16: 499-506.
Rossi, F., Li, H., Liu, Y. and De Philippis, R., 2017. Cyanobacterial inoculation (cyanobacterisation): Perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal. Earth-Science Reviews, 171: 28-43.
Sadeghi, S.H.R., Ghavimi Panah, M.H., Younesi, H. and Kheirfam, H., 2018. Ameliorating some quality properties of an erosion-prone soil using biochar produced from dairy wastewater sludge. Catena, 171: 193-198.
Seidlewicz, G., Zak, A., Sharma, L., Kosakowska, A. and Pazdro, K., 2020. Effects of oxytetracycline on growth and chlorophyll a fluorescence in green algae (Chlorella vulgaris), diatom (Phaeodactylum tricornutum) and cyanobacteria (Microcystis aeruginosa and Nodularia spumigena). Oceanologia, 62(2): 214-225.
Soleimani, R., Alikhani, H.A., Towfighi, H., Khavazi, K. and Pourbabaee, A.A., 2017. Isolated bacteria from saline–sodic soils alter the response of wheat under high adsorbed sodium and salt stress. International Journal of Environmental Science and Technology, 14(1): 143-150.
Wang, W., Liu, Y., Li, D., Hu, C. and Rao, B., 2009. Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biology and Biochemistry, 41(5): 926-929.
Young, J.P., Evans, R.A., Roundy, A.B. and Brown, J.A., 1986. Dynamic landforms and plant communities in a pluvial lake basin. The Great Basin Naturalist, 46: 1-21.