Abdul-Qawy, A.S., Pramod, P., Magesh, E. and Srinivasulu, T., 2015. The internet of things (iot): An overview. International Journal of Engineering Research and Applications, 5(12): 71-82.
Adebola, T. and Ibeke, E., 2023. Agriculture in Africa: the emerging role of artificial intelligence. In. LexisNexis Butterworths.
Adoyo, B., Schaffner, U., Mukhovi, S., Kiteme, B., Mbaabu, P.R., Eckert, S., Choge, S. and Ehrensperger, A., 2022. Spatiotemporal trajectories of invasive tree species reveal the importance of collective action for successful invasion management. Journal of Land Use Science, 17(1): 487-504. DOI: 10.1080/1747423X.2022.2128914
Agga, A., Abbou, A., Labbadi, M., El Houm, Y. and Ali, I.H.O., 2022. CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production. Electric Power Systems Research, 208, 107908. https://doi.org/10.1080/1747423X.2022.2128914.
Ala-Pietilä, P. and Smuha, N.A., 2021. A framework for global cooperation on artificial intelligence and its governance. Reflections on Artificial Intelligence for Humanity, 237-265. DOI:10.1007/978-3-030-69128-8_15.
Aldoseri, A., Al-Khalifa, K.N. and Hamouda, A.M., 2023. Rethinking data strategy and integration for artificial intelligence: concepts, opportunities, and challenges. Applied Sciences, 13(12): 7082. DOI:10.20944/preprints202305.1565.v1.
Ali, F., Rehman, A., Hameed, A., Sarfraz, S., Rajput, N.A. and Atiq, M., 2024. Climate Change Impact on Plant Pathogen Emergence: Artificial Intelligence (AI) Approach. In Plant Quarantine Challenges under Climate Change Anxiety (pp. 281-303). Springer. DOI:10.1007/978-3-031-56011-8_9.
Alibabaei, K., Gaspar, P.D., Lima, T.M., Campos, R.M., Girão, I., Monteiro, J. and Lopes, C.M., 2022. A review of the challenges of using deep learning algorithms to support decision-making in agricultural activities. Remote Sensing, 14(3): 638. DOI:10.3390/rs14030638.
Allam, Z. and Dhunny, Z.A., 2019. On big data, artificial intelligence and smart cities. Cities, 89: 80-91. DOI:10.1051/e3sconf/202340203013.
Alshamrani, M., 2022. IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. Journal of King Saud University Computer and Information Sciences, 34(8): 4687-4701. DOI:10.1016/j.jksuci.2021.06.005.
Alves, V.M., Auerbach, S.S., Kleinstreuer, N., Rooney, J.P., Muratov, E.N., Rusyn, I., Tropsha, A. and Schmitt, C., 2021. Curated data in—trustworthy in silico models out: the impact of data quality on the reliability of artificial intelligence models as alternatives to animal testing. Alternatives to Laboratory Animals, 49(3): 73-82. DOI:10.1177/02611929211029635.
Anthony, L., 2017. The Aliens Among Us: How Invasive Species are Transforming the Planet and Ourselves. Yale University Press. DOI:10.1086/699431.
Antrop, M., 2005. Why landscapes of the past are important for the future. Landscape and Urban Planning, 70(1-2): 21- 34. DOI:10.1016/j.landurbplan.2003.10.002.
Anumandla, S.K.R., 2018. AI-enabled Decision Support Systems and Reciprocal Symmetry: Empowering Managers for Better Business Outcomes. International Journal of Reciprocal Symmetry and Theoretical Physics, 5: 33-41.
Argyrou, A. and Agapiou, A., 2022. A review of artificial intelligence and remote sensing for archaeological research. Remote Sensing, 14(23): 6000. DOI:10.3390/rs14236000.
Bachmann, N., Tripathi, S., Brunner, M. and Jodlbauer, H., 2022. The contribution of data-driven technologies in achieving the sustainable development goals. Sustainability, 14(5): 2497. DOI: 10.3390/su14052497
Bae, M.J. and Park, Y.S., 2014. Biological early warning system based on the responses of aquatic organisms to disturbances: a review. Science of the Total Environment, 466: 635-649. DOI:10.1016/j.scitotenv.2013.07.075.
Baldin, M., Breunig, T., Cue, R., De Vries, A., Doornink, M., Drevenak, J., Fourdraine, R., George, R., Goodling, R. and Greenfield, R., 2021. Integrated decision support systems (IDSS) for dairy farming: A discussion on how to improve their sustained adoption. Animals, 11(7): 2025. DOI:10.3390/ani11102981.
Beijbom, O., Edmunds, P.J., Roelfsema, C., Smith, J., Kline, D.I., Neal, B.P., Dunlap, M.J., Moriarty, V., Fan, T.Y. and Tan, C.J., 2015. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PloS one, 10(7) e0130312. DOI:10.1371/journal.pone.0130312.
Belwafi, K., Alkadi, R., Alameri, S.A., Al Hamadi, H. and Shoufan, A., 2022. Unmanned aerial vehicles’ remote identification: A tutorial and survey. IEEE Access, 10, 87577-87601. DOI:10.1109/ACCESS.2022.3199909.
Beng, K.C. and Corlett, R.T., 2020. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodiversity and Conservation, 29(7): 2089-2121. DOI:10.1007/s10531-020-01980-0
Biondi, A., Mommaerts, V., Smagghe, G., Vinuela, E., Zappalà, L. and Desneux, N., 2012. The non target impact of spinosyns on beneficial arthropods. Pest Management Science, 68(12): 1523-1536. Brodrick, P.G., Davies, A.B. and Asner, G.P., 2019. Uncovering ecological patterns with convolutional neural networks. Ecology & Evolution, 34(8): 734-745. DOI:10.1002/ps.3396.
Buchelt, A., Adrowitzer, A., Kieseberg, P., Gollob, C., Nothdurft, A., Eresheim, S., Tschiatschek, S., Stampfer, K. and Holzinger, A., 2024. Exploring artificial intelligence for applications of drones in forest ecology and management. Forest Ecology and Management, 551: 121530. DOI:10.1016/j.foreco.2023.121530
Causevic, A., Causevic, S., Fielding, M. and Barrott, J., 2024. Artificial intelligence for sustainability: opportunities and risks of utilizing Earth observation technologies to protect forests. Discover Conservation, 1(1): 2.doi.org/10.1007/s44353-024-00002-2.
Chalmers, C., Fergus, P., Wich, S. and Montanez, A.C., 2019. Conservation AI: Live stream analysis for the detection of endangered species using convolutional neural networks and drone technology. arXiv preprint arXiv:1910.07360. DOI:10.48550/arXiv.1910.07360.
Chamara, R., Senevirathne, S., Samarasinghe, S., Premasiri, M., Sandaruwani, K., Dissanayake, D., De Silva, S., Ariyaratne, W. and Marambe, B., 2020. Role of artificial intelligence in achieving global food security: a promising technology for future. Sri Lanka Journal of Food and Agriculture, 6(2). doi.org/10.4038/sljfa.v6i2.88.
Chan, M., Estève, D., Fourniols, J.Y., Escriba, C. and Campo, E., 2012. Smart wearable systems: Current status and future challenges. Artificial Intelligence in Medicine, 56(3): 137-156. doi.org/10.1016/j.artmed.2012.09.003.
Chattu, V.K., 2021. A review of artificial intelligence, big data, and blockchain technology applications in medicine and global health. Big Data and Cognitive Computing, 5(3): 41. doi.org/10.3390/bdcc5030041.
Chen, L., Chen, Z., Zhang, Y., Liu, Y., Osman, A.I., Farghali, M., Hua, J., Al-Fatesh, A., Ihara, I. and Rooney, D.W., 2023. Artificial intelligence-based solutions for climate change: a review. Environmental Chemistry Letters, 21(5): 2525-2557. doi.org/10.1007/s10311-023-01617-y.
Chen, P., Wu, L. and Wang, L., 2023. AI fairness in data management and analytics: A review on challenges, methodologies and applications. Applied Sciences, 13(18): 10258. DOI:10.3390/app131810258.
Chen, Y.N., Fan, K.C., Chang, Y.L. and Moriyama, T., 2023. Special issue review: artificial intelligence and machine learning applications in remote sensing. In (Vol. 15, pp. 569): MDPI. DOI:10.3390/rs15030569.
Chisom, O.N., Biu, P.W., Umoh, A.A., Obaedo, B.O., Adegbite, A.O. and Abatan, A., 2024. Reviewing the role of AI in environmental monitoring and conservation: A data-driven revolution for our planet. World Journal of Advanced Research and Reviews, 21(1): 161-171. DOI:10.30574/wjarr.2024.21.1.2720.
Clarke, D.A., Palmer, D.J., McGrannachan, C., Burgess, T.I., Chown, S.L., Clarke, R.H., Kumschick, S., Lach, L., Liebhold, A.M. and Roy, H.E., 2021. Options for reducing uncertainty in impact classification for alien species. Ecosphere, 12(4): e03461. doi.org/10.1002/ecs2.3461.
Coghlan, S. and Parker, C., 2023. Harm to Nonhuman animals from AI: A systematic account and framework. Philosophy & Technology, 36(2): 25.doi.org/10.1007/s13347-023-00627-6.
Cohen, J.G. and Lewis, M.J., 2020. Development of an automated monitoring platform for invasive plants in a rare Great Lakes ecosystem using uncrewed aerial systems and convolutional neural networks. 2020 international conference on unmanned aircraft systems (ICUAS), doi.org/10.13140/RG.2.2.26336.43522.
Collins, A.C., 2024. Harnessing Innovations in AI and Robotics for Environmental Conservation: A Comprehensive Overview. DOI:10.29121/shodhkosh.v5.i5.2024.1896.
Comtet, T., Sandionigi, A., Viard, F. and Casiraghi, M., 2015. DNA (meta) barcoding of biological invasions: a powerful tool to elucidate invasion processes and help managing aliens. Biological Invasions, 17: 905-922. DOI:10.1007/s10530-015-0854-y.
Cuthbert, R.N., Diagne, C., Hudgins, E.J., Turbelin, A., Ahmed, D.A., Albert, C., Bodey, T.W., Briski, E., Essl, F. and Haubrock, P.J., 2022. Biological invasion costs reveal insufficient proactive management worldwide. Science of the Total Environment, 819, 153404. doi.org/10.1016/j.scitotenv.2022.153404.
da Silva, S.D.P., Eugenio, F.C., Fantinel, R.A., de Paula Amaral, L., dos Santos, A.R., Mallmann, C.L., dos Santos, F. D., Pereira, R.S. and Ruoso, R., 2023. Modeling and detection of invasive trees using UAV image and machine learning in a subtropical forest in Brazil. Ecological Informatics, 74, 101989. DOI:10.1016/j.ecoinf.2023.101989.
Darling, J.A. and Blum, M.J., 2007. DNA-based methods for monitoring invasive species: a review and prospectus. Biological Invasions, 9: 751-765. DOI: 10.1007/s10530-006-9079-4.
Darling, J.A. and Mahon, A.R., 2011. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environmental Research, 111(7): 978-988. DOI: 10.1016/j.envres.2011.02.001.
Dauvergne, P., 2020. AI in the Wild: Sustainability in the Age of Artificial Intelligence. MIT Press. DOI:10.7551/mitpress/12350.001.0001.
De Groot, M., O'Hanlon, R., Bullas-Appleton, E., Csóka, G., Csiszár, Á., Faccoli, M., Gervasini, E., Kirichenko, N., Korda, M. and Marinšek, A., 2020. Challenges and solutions in early detection, rapid response and communication about potential invasive alien species in forests. Management of Biological Invasions, 11(4): 637- 660. DOI:10.3391/mbi.2020.11.4.02.
Dejean, T., Valentini, A., Miquel, C., Taberlet, P., Bellemain, E. and Miaud, C., 2012. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. Journal of Applied Ecology, 49(4): 953-959. doi.org/10.1111/j.1365-2664.2012.02171.x.
Demertzis, K. and Iliadis, L., 2017. Detecting invasive species with a bio-inspired semi-supervised neurocomputing approach: The case of Lagocephalus sceleratus. Neural Computing and Applications, 28, 1225-1234. https://link.springer.com/article/10.1007/s00521-016-2591-2.
Demirel, M. and Kumral, N.A., 2021. Artificial intelligence in integrated pest management. In Artificial intelligence and IoT-based technologies for sustainable farming and smart agriculture (pp. 289-313). IGI Global. doi.org/10.4018/978-1-7998-1722-2.ch018.
Di Vaio, A., Palladino, R., Hassan, R. and Escobar, O., 2020. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research, 121: 283- 314. doi.org/10.4018/978-1-7998-1722-2.ch018.
Díaz-Rodríguez, N., Del Ser, J., Coeckelbergh, M., de Prado, M.L., Herrera-Viedma, E. and Herrera, F., 2023. Connecting the dots in trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation. Information Fusion, 99, 101896. doi.org/10.1016/j.inffus.2023.101896.
Dirgová Luptáková, I., Pospíchal, J. and Huraj, L., 2023. Beyond Code and Algorithms: Navigating Ethical Complexities in Artificial Intelligence. In Proceedings of the Computational Methods in Systems and Software (pp. 316-332). Springer.doi.org/10.1007/978-3-031-54813-0_30.
Ditria EM, Buelow CA, Gonzalez-Rivero M and Connolly RM. Artificial intelligence and automated monitoring for assisting conservation of marine ecosystems: A perspective. Front Mar Sci. 2022;9:1-21. doi:10.3389/fmars.2022.918104.
Dogan, G., Vaidya, D., Bromhal, M. and Banday, N., 2024. Artificial intelligence in marine biology. In A Biologist s Guide to Artificial Intelligence (pp. 241-254). DOI:10.1016/B978-0-443-24001-0.00014-2.
Duflou, J.R., Sutherland, J.W., Dornfeld, D., Herrmann, C., Jeswiet, J., Kara, S., Hauschild, M. and Kellens, K., 2012. Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annals, 61(2): 587- 609.doi.org/10.1016/j.cirp.2012.05.002.
Dukes, J.S., Pontius, J., Orwig, D., Garnas, J.R., Rodgers, V.L., Brazee, N., Cooke, B., Theoharides, K.A., Stange, E. E. and Harrington, R., 2009. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? Canadian Journal of Forest Research, 39(2): 231-248.doi:10.1139/X08-171
Dwivedi, Y.K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J. and Eirug, A., 2021. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57: 101994. doi.org/10.1016/j.ijinfomgt.2019.08.002.
Early, R., Bradley, B.A., Dukes, J.S., Lawler, J.J., Olden, J.D., Blumenthal, D.M., Gonzalez, P., Grosholz, E.D., Ibañez, I. and Miller, L.P., 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications, 7(1): 12485.1-13. DOI:10.1038/ncomms12485.
Elith J., 2017. Predicting distributions of invasive species. In: Invasive species: Risk assessment and management. Cambridge University Press. p. 93–129. doi:10.1017/9781139019606.006.
Escobar, L.E., Mallez, S., McCartney, M., Lee, C., Zielinski, D.P., Ghosal, R., Bajer, P.G., Wagner, C., Nash, B. and Tomamichel, M., 2018. Aquatic invasive species in the Great Lakes Region: an overview. Reviews in Fisheries Science & Aquaculture, 26(1): 121-138. doi.org/10.1080/23308249.2017.1363715.
Fascista, A., 2022. Toward integrated large-scale environmental monitoring using WSN/UAV/Crowdsensing: A review of applications, signal processing, and future perspectives. Sensors. 22(5):1824:1-17. doi:10.3390/s22051824.
Felzmann, H., Fosch-Villaronga, E., Lutz, C. and Tamò-Larrieux, A., 2020. Towards transparency by design for artificial intelligence. Science and Engineering Ethics, 26(6): 3333- 3361. DOI:10.1007/s11948-020-00276-4
Ferrara, E., 2023. Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies. Science, 6(1): 3. DOI:10.3390/sci6010003.
Filip, F.G., 2008. Decision support and control for large-scale complex systems. Annual Reviews in Control, 32(1): 61-70. DOI:10.1016/j.arcontrol.2008.03.002.
Finch, D.M., Butler, J.L., Runyon, J.B., Fettig, C.J., Kilkenny, F.F., Jose, S., Frankel, S.J., Cushman, S.A., Cobb, R.C. and Dukes, J.S., 2021. Effects of climate change on invasive species. Invasive species in forests and rangelands of the United States: a comprehensive science synthesis for the United States Forest Sector, 57-83. DOI:10.3390/insects12110985
Firestone, J. and Corbett, J.J., 2005. Coastal and port environments: international legal and policy responses to reduce ballast water introductions of potentially invasive species. Ocean Development and International Law, 36(3): 291-316. DOI:10.1080/00908320591004469.
Galloway, A., Brunet, D., Valipour, R., McCusker, M., Biberhofer, J., Sobol, M.K., Moussa, M. and Taylor, G.W., 2022. Predicting dreissenid mussel abundance in nearshore waters using underwater imagery and deep learning. Limnology and Oceanography: Methods, 20(4): 233-248. doi:10.1002/lom3.10483.
Garcia-Moreno F.M., Ruiz-Espigares J., Gutiérrez-Naranjo, M.A. and Marchal J.A., 2024. Using deep learning for predicting the dynamic evolution of breast cancer migration. Comput Biol Med. 180:108890. doi:10.1016/j.compbiomed.2024.108890.
Gonzalez, L.F., Montes, G.A., Puig, E., Johnson, S., Mengersen, K. and Gaston, K.J., 2016. Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors, 16(1): 97. DOI:10.3390/s16010097
Górriz, J.M., Ramírez, J., Ortiz, A., Martinez-Murcia, F.J., Segovia, F., Suckling, J., Leming, M., Zhang, Y.D., Álvarez-Sánchez, J.R. and Bologna, G., 2020. Artificial intelligence within the interplay between natural and artificial computation: Advances in data science and applications. Neurocomputing, 410: 237-270. doi.org/10.1016/j.neucom.2020.05.078.
Groves, D.G. and Lempert, R.J., 2007. A new analytic method for finding policy-relevant scenarios. Global Environmental Change, 17(1): 73-85. DOI:10.1016/j.gloenvcha.2006.11.006.
Guan, W., Zhang, H. and Leung, V.C., 2021. Customized slicing for 6G: Enforcing artificial intelligence on resource management. IEEE Network, 35(5): 264-271. DOI:10.1109/MNET.011.2000644.
Gudala, L., Shaik, M., Venkataramanan, S. and Sadhu, A.K.R., 2019. Leveraging Artificial Intelligence for Enhanced Threat Detection, Response, and Anomaly Identification in Resource-Constrained IoT Networks. Distributed Learning and Broad Applications in Scientific Research, 5: 23-54. DOI: 10.5281/zenodo.3268390
Gupta, A., Wright, C., Ganapini, M.B., Sweidan, M. and Butalid, R., 2022. State of AI ethics report (volume 6, february 2022).arXiv preprint arXiv:2202.07435.doi.org/10.48550/arXiv.2202.07435.
Gupta, M., Abdelsalam, M., Khorsandroo, S. and Mittal, S., 2020. Security and privacy in smart farming: Challenges and opportunities. IEEE Access, 8: 34564-34584. DOI:10.1109/ACCESS.2020.2975142.
Gupta, S., Modgil, S., Bhattacharyya, S. and Bose, I., 2022. Artificial intelligence for decision support systems in the field of operations research: review and future scope of research. Annals of Operations Research, 308(1): 215-274. DOI:10.1007/s10479-020-03856-6.
Haack, R.A., Hérard, F., Sun, J. and Turgeon, J.J., 2010. Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective. Annual Review of Entomology, 55(1): 521-546. DOI:10.1146/annurev-ento-112408-085427.
Hagerty, A. and Rubinov, I., 2019. Global AI ethics: a review of the social impacts and ethical implications of artificial intelligence. arXiv preprint arXiv:1907.07892. DOI:10.48550/arXiv.1907.07892.
Haimes, Y.Y., 2011. Risk modeling, assessment, and management.
Halubanza, B., 2024. A framework for an early warning system for the management of the spread of locust invasion based on artificial intelligence technologies The University of Zambia]. DOI:10.33260/zictjournal.v6i1.152
Harding, A., Harper, B., Stone, D., O’Neill, C., Berger, P., Harris, S. and Donatuto, J., 2012. Conducting research with tribal communities: Sovereignty, ethics, and data-sharing issues. Environmental Health Perspectives, 120(1): 6-10. DOI:10.1289/ehp.1103904.
Hasegan, M.F., Nudurupati, S.S. and Childe, S.J., 2018. Predicting performance–a dynamic capability view. International Journal of Operations and Production Management, 38(11): 2192-2213. DOI:10.1108/IJOPM-10-2016-0601.
Hilbeck, A., Arpaia, S., Birch, A.N.E., Chen, Y., Fontes, E.M., Lang, A., Le Thi Thu Hong, L.T.T.H., Lövei, G.L., Manachini, B. and Nguyen Thi Thu Cuc, N.T.T.C., 2008. Non-target and biological diversity risk assessment. In Environmental risk assessment of genetically modified organisms: challenges and opportunities with Bt cotton in Vietnam, Vol. 4 (pp. 115-137). DOI:10.1079/9781845933906.0115.
Holzmeyer, C., 2021. Beyond ‘AI for Social Good’(AI4SG): social transformations—not tech-fixes—for health equity. Interdisciplinary Science Reviews, 46(1-2): 94-125. DOI:10.1080/03080188.2020.1840221
Høye, T., August, T., Balzan, M.V., Biesmeijer, K., Bonnet, P., Breeze, T., Dominik, C., Gerard, F., Joly, A. and Kalkman, V., 2023. Modern approaches to the monitoring of Biоdiversity (MAMBO). Research Ideas and Outcomes, 9, e116951. doi.org/10.3897/rio.9.e116951
Høye, T.T., Ärje, J., Bjerge, K., Hansen, O.L., Iosifidis, A., Leese, F., Mann, H.M., Meissner, K., Melvad, C. and Raitoharju, J., 2021. Deep learning and computer vision will transform entomology. Proceedings of the National Academy of Sciences, 118(2): e2002545117. DOI:10.1101/2020.07.03.187252
Hulme, P.E., 2006. Beyond control: wider implications for the management of biological invasions. Journal of Applied Ecology, 43(5): 835-847. DOI:10.1111/j.1365-2664.2006.01227.x
ion of digital technologies to agroforestry systems. Master’s thesis, Ghent University, 84 pages. DOI: 10.62324/TAPS/2024.050
Isabelle, D.A. and Westerlund, M., 2022. A review and categorization of artificial intelligence-based opportunities in wildlife, ocean and land conservation. Sustainability, 14(4): 1979. doi.org/10.3390/su14041979
Ish, D., Ettinger, J. and Ferris, C., 2021. Evaluating the effectiveness of artificial intelligence systems in intelligence analysis. RAND Corporation Santa Monica, CA. DOI: 10.7249/RRA464-1.
Janssen, S.J., Porter, C.H., Moore, A.D., Athanasiadis, I.N., Foster, I., Jones, J.W. and Antle, J.M., 2017. Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agricultural Systems, 155: 200-212. DOI:10.1016/j.agsy.2016.09.017
Jarrahi, M.H., 2018. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4): 577-586. DOI:10.1016/j.bushor.2018.03.007
Jiménez López, J. and Mulero-Pázmány, M., 2019. Drones for conservation in protected areas: Present and future. Drones, 3(1): 10. DOI:10.3390/drones3010010
John Wiley and Sons, Haines-Young, R., 2009. Land use and biodiversity relationships. Land use Policy, 26: S178-S186. DOI:10.1016/j.landusepol.2009.08.009.
Johnston, E.L., Dafforn, K.A., Clark, G.F., Rius, M. and Floerl, O., 2017. Anthropogenic activities promoting the establishment and spread of marine non-indigenous species post-arrival. In How Anthropogenic Activities Affect the Establishment and Spread of Non-Indigenous Species Post-Arrival (chapter). DOI: 10.1201/b21944-6
Kattenborn, T., Leitloff, J., Schiefer, F. and Hinz, S., 2021. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173: 24-49. DOI:10.1016/j.isprsjprs.2020.12.010
Keller, R.P., Drake, J.M., Drew, M.B. and Lodge, D.M., 2011. Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Diversity and Distributions, 17(1): 93- 102. DOI:10.1111/j.1472-4642.2010.00696.x
Knoll, F., Hammernik, K., Zhang, C., Moeller, S., Pock, T., Sodickson, D.K. and Akcakaya, M., 2020. Deep-learning methods for parallel magnetic resonance imaging reconstruction: A survey of the current approaches and issues. IEEE Signal Processing Magazine, 37(1): 128-140. DOI:10.1109/MSP.2019.2950640
Kyle, K.E., 2023. Using eDNA to Bridge the Gap Between Species Presence and Detection: Implications for Conservation and Invasive Species Management. Biodiversity and Conservation. Pages 1–17. DOI: 10.1007/s10531-025-03112-y
Lahoz-Monfort, J.J. and Magrath, M.J., 2021. A comprehensive overview of technologies for species and habitat monitoring and conservation. BioScience, 71(10): 1038-1062. DOI:10.1093/biosci/biab073
Lake, T.A., Briscoe Runquist, R.D. and Moeller, D.A., 2022. Deep learning detects invasive plant species across complex landscapes using Worldview‐2 and Planetscope satellite imagery. Remote Sensing in Ecology and Conservation, 8(6): 875-889. DOI:10.1002/rse2.288
Lantschner, M.V., de la Vega, G. and Corley, J.C., 2019. Predicting the distribution of harmful species and their natural enemies in agricultural, livestock and forestry systems: an overview. International Journal of Pest Management, 65(3): 190-206. DOI:10.1080/09670874.2018.1533664
Leslie, D., 2019. Understanding artificial intelligence ethics and safety. arXiv preprint arXiv:1906.05684. DOI:10.48550/arXiv.1906.05684
Lévy, L.N., 2024. Advanced clustering and AI-driven decision support systems for smart energy management Université Paris-Saclay]. DOI:10.70023/qnges.251102
Levy, O. and Shahar, S., 2024. Artificial Intelligence for Climate Change Biology: From Data Collection to Predictions. Integrative and Comparative Biology, 64(3): 953–974. DOI: 10.1007/s44163-024-00170-z
Liang, W., Tadesse, G.A., Ho, D., Fei-Fei, L., Zaharia, M., Zhang, C. and Zou, J., 2022. Advances, challenges and opportunities in creating data for trustworthy AI. Nature Machine Intelligence, 4(8): 669-677. DOI:10.1038/s42256-022-00516-1
Lodge, D.M., Simonin, P.W., Burgiel, S.W., Keller, R.P., Bossenbroek, J.M., Jerde, C.L., Kramer, A.M., Rutherford, E.S., Barnes, M.A. and Wittmann, M.E., 2016. Risk analysis and bioeconomics of invasive species to inform policy and management. Annual Review of Environment and Resources, 41(1): 453-488. doi.org/10.1146/annurev-environ-110615-085532
Majeed, A. and Hwang, S.O., 2021. Data-driven analytics leveraging artificial intelligence in the era of COVID-19: an insightful review of recent developments. Symmetry, 14(1): 16. DOI:10.1007/s00354-021-00128-0
Mårtensson, P.Å., Hedström, L., Sundelius, B., Skiby, J.E., Elbers, A. and Knutsson, R., 2013. Actionable knowledge and strategic decision making for bio-and agroterrorism threats: building a collaborative early warning culture. Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science, 11(S1): S46-S54. DOI: 10.1089/bsp.2013.0039
Martinez, B., Reaser, J.K., Dehgan, A., Zamft, B., Baisch, D., McCormick, C., Giordano, A.J., Aicher, R. and Selbe, S., 2020. Technology innovation: advancing capacities for the early detection of and rapid response to invasive species. Biological Invasions, 22(1): 75-100. doi.org/10.1007/s10530-019-02146-y
Mazzetti, P., Nativi, S., Santoro, M., Giuliani, G., Rodila, D., Folino, A., Caruso, S., Aracri, G. and Lehmann, A., 2022. Knowledge formalization for Earth Science informed decision-making: The GEOEssential knowledge base. Environmental Science and Policy, 131: 93-104. DOI:10.1016/j.envsci.2021.12.023
Meyerson, L.A., Pauchard, A., Brundu, G., Carlton, J.T., Hierro, J.L., Kueffer, C., Pandit, M.K., Pyšek, P., Richardson, D.M. and Packer, J.G., 2022. Moving toward global strategies for managing invasive alien species. In Global Plant Invasions (pp. 331-360). Springer. DOI:10.1007/978-3-030-89684-3_16
Miller, B.W., Eaton, M.J., Symstad, A.J., Schuurman, G.W., Rangwala, I. and Travis, W.R., 2023. Scenario-based decision analysis: integrated scenario planning and structured decision making for resource management under climate change. In (pp. 110275): Elsevier. DOI:10.1007/978-3-030-89684-3_16
Miller, K.D. and Waller, H.G., 2003. Scenarios, real options and integrated risk management. Long Range Planning, 36(1): 93-107. DOI:10.1016/S0024-6301(02)00205-4
Mohan, M., Richardson, G., Gopan, G., Aghai, M.M., Bajaj, S., Galgamuwa, G.P., Vastaranta, M., Arachchige, P.S.P., Amorós, L. and Corte, A.P.D., 2021. UAV-supported forest regeneration: Current, challenges and implications. Remote Sensing, 13(13): 2596. DOI:10.1088/1755-1315/1167/1/012030
Molnar, J.L., Gamboa, R.L., Revenga, C. and Spalding, M.D., 2008. Assessing the global threat of invasive species to marine biodiversity. Frontiers in Ecology and the Environment, 6(9): 485-492. DOI:10.1890/070064
Morisette, J., Burgiel, S., Brantley, K., Daniel, W.M., Darling, J., Davis, J., Franklin, T., Gaddis, K., Hunter, M. and Lance, R., 2021. Strategic considerations for invasive species managers in the utilization of environmental DNA (eDNA): steps for incorporating this powerful surveillance tool. Management of Biological Invasions, 12(3): 747–761. DOI: 10.3391/mbi.2021.12.3.15.
Morley, J., Machado, C.C., Burr, C., Cowls, J., Joshi, I., Taddeo, M. and Floridi, L., 2020. The ethics of AI in health care: a mapping review. Social Science and Medicine, 260: 113172. DOI:10.2139/ssrn.4987317
Morodi, T.J., 2016. The precautionary principle and public environmental decision-making in South Africa: an ethical appraisal Stellenbosch: Stellenbosch University]. DOI:10.1093/lpr/mgl010
Moynihan, D.P., 2008. Learning under uncertainty: Networks in crisis management. Public Administration Review, 68(2): 350-365.
Nahrung, H.F., Liebhold, A.M., Brockerhoff, E.G. and Rassati, D., 2023. Forest insect biosecurity: processes, patterns, predictions, pitfalls. Annual Review of Entomology, 68(1): 211-229. DOI:10.1111/j.1540-6210.2007.00867.x
Nega, A., 2014. Review on concepts in biological control of plant pathogens. Journal of Biology, Agriculture and Healthcare, 4(27): 33-54. DOI:10.3390/microorganisms10030596
Nininahazwe, F., Théau, J., Marc Antoine, G. and Varin, M., 2023. Mapping invasive alien plant species with very high spatial resolution and multi-date satellite imagery using object-based and machine learning techniques: A comparative study. GIS cience and Remote Sensing, 60(1): 2190203. DOI:10.1080/15481603.2023.2190203
Norros, V., Laamanen, T., Meissner, K., Iso-Touru, T., Kahilainen, A., Lehtinen, S., Lohtander-Buckbee, K., Nygård, H., Pennanen, T. and Ruohonen-Lehto, M., 2022. Roadmap for implementing environmental DNA (eDNA) and other molecular monitoring methods in Finland– Vision and action plan for 2022–2025. DOI:10.3897/arphapreprints.e132214
Ohmann, C., Banzi, R., Canham, S., Battaglia, S., Matei, M., Ariyo, C., Becnel, L., Bierer, B., Bowers, S. and Clivio, L., 2017. Sharing and reuse of individual participant data from clinical trials: principles and recommendations. BMJ Open, 7(12): e018647. doi.org/10.3390/data9040059
Økland, B., Haack, R.A. and Wilhelmsen, G., 2012. Detection probability of forest pests in current inspection protocols–A case study of the bronze birch borer. Scandinavian Journal of Forest Research, 27(3): 285-297. DOI:10.1080/02827581.2011.632782
Opitz, R. and Herrmann, J., 2018. Recent trends and longstanding problems in archaeological remote sensing. Journal of Computer Applications in Archaeology, 1(1): 19- 41. DOI:10.5334/jcaa.11
Ortiz-Barrios, M., Arias-Fonseca, S., Ishizaka, A., Barbati, M., Avendaño-Collante, B. and Navarro-Jiménez, E., 2023. Artificial intelligence and discrete-event simulation for capacity management of intensive care units during Covid-19 pandemic: a case study. Journal of Business Research, 160: 113806. DOI:10.1016/j.jbusres.2023.113806
Pal, O.K., Shovon, M.S. H., Mridha, M.F. and Shin, J., 2023. A Comprehensive Review of AI-enabled Unmanned Aerial Vehicle: Vision, and Challenges. arXiv preprint arXiv:2310.16360. 27 pages.. DOI:10.48550/arXiv.2310.16360
Paliwal, A., Mhelezi, M., Galgallo, D., Banerjee, R., Malicha, W. and Whitbread, A., 2024. Utilizing Artificial Intelligence and Remote Sensing to Detect Prosopis juliflora Invasion: Environmental Drivers and Community Insights in Rangelands of Kenya. Plants, 13(13): 1868. DOI:10.3390/plants13131868
Palvi, A., 2023. The Effects of Northern Forage Crop Species on the Soil Carbon Sequestration and Microbial Community Structure. DOI:10.1097/SS.0b013e31802d11eb
Pimentel, D., Zuniga, R. and Morrison, D., 2005. Update on the environmental and economic costs associated with alieninvasive species in the United States. Ecological Economics, 52(3), 273-288. DOI:10.1016/j.ecolecon.2004.10.002
Pramanik, P.K.D., Pal, S. and Choudhury, P., 2018. Beyond automation: the cognitive IoT. artificial intelligence brings sense to the Internet of Things. Cognitive Computing for Big Data Systems Over IoT: Frameworks, Tools and Applications, 1-37. DOI:10.1007/978-3-319-70688-7_1
Prodanovic, V., Bach, P.M. and Stojkovic, M., 2024. Urban nature-based solutions planning for biodiversity outcomes: human, ecological, and artificial intelligence perspectives. Urban Ecosystems, 1-12. DOI:10.1016/j.envsci.2020.04.002
Pyšek, P. and Richardson, D.M., 2010. Invasive species, environmental change and management, and health. Annual Review of Environment and Resources, 35(1); 25-55. DOI:10.1146/annurev-environ-033009-095548
Pyzer-Knapp, E.O., Pitera, J.W., Staar, P.W., Takeda, S., Laino, T., Sanders, D.P., Sexton, J., Smith, J.R. and Curioni, A., 2022. Accelerating materials discovery using artificial intelligence, high performance computing and robotics. npj Computational Materials, 8(1): 84. DOI:10.1038/s41524-022-00765-z
Rakhmatulin, I., Kamilaris, A. and Andreasen, C., 2021. Deep neural networks to detect weeds from crops in agricultural environments in real-time: A review. Remote Sensing, 13(21): 4486. DOI:10.3390/rs13214486
Rao, B., Mulloth, B. and Harrison, A.J., 2019. Integrating AI Capabilities into Existing Technology Platforms: Drones as a Case in Point. 2019 Portland International Conference on Management of Engineering and Technology (PICMET), pp. 1–6. DOI: 10.4135/9781529752465
Rasheed, H., 2024. Consideration of Cloud-Web-Concepts for Standardization and Interoperability: A Comprehensive Review for Sustainable Enterprise Systems, AI, and IoT Integration. Journal of Information Technology and Informatics, 3(2).
Rees, W.E., 2006. Globalization, trade and migration: Undermining sustainability. Ecological Economics, 59(2): 220-225. DOI:10.1016/j.ecolecon.2005.12.021
Reid, A.J., Carlson, A.K., Creed, I.F., Eliason, E.J., Gell, P.A., Johnson, P.T., Kidd, K.A., MacCormack, T.J., Olden, J.D. and Ormerod, S.J., 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3): 849-873. DOI:10.1111/brv.12480
Sahoo, B.B., Jha, R., Singh, A. and Kumar, D., 2019. Long shortterm memory (LSTM) recurrent neural network for lowflow hydrological time series forecasting. Acta Geophysica, 67(5): 1471-1481. DOI:10.1007/s11600-019-00330-1
Sarantopoulos, F., 2024. Decarbonizing the Shipping Industry through Innovative Technologies, Artificial Intelligence and New Regulations. Master’s thesis, MIT Sloan School of Management, Massachusetts Institute of Technology, pp. 1–80. DOI:10.62012/mp.v3i2.35386
Sarker, I.H., 2021. Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3): 160. DOI: 10.1007/s42979-021-00592-x
Sey, A. and Mudongo, O., 2021. Case studies on AI skills capacity building and AI in workforce development in Africa. Research ICT Africa. Available from: https://researchictafrica. net/publication/case-studies-onai-skills-capacity-buildingand-ai-in-workforce-developmentin-africa. DOI:10.1007/s42979-021-00592-x
Sharma, A., Sharma, V., Jaiswal, M., Wang, H.C., Jayakody, D.N.K., Basnayaka, C.M.W. and Muthanna, A., 2022. Recent trends in AI-based intelligent sensing. Electronics, 11(10): 1661. doi.org/10.3390/electronics11101661
Sharma, S., Sato, K. and Gautam, B.P., 2023. A Methodological Literature Review of Acoustic Wildlife Monitoring Using Artificial Intelligence Tools and Techniques. Sustainability, 15(9): 7128. doi.org/10.3390/su15097128
Shin, D.D., 2023. Algorithms, Humans, and Interactions: How Do Algorithms Interact with People? Designing Meaningful AI Experiences. CRC Press, Taylor & Francis Group 217 pages. DOI:10.1201/b23083
Shivaprakash, K.N., Swami, N., Mysorekar, S., Arora, R., Gangadharan, A., Vohra, K., Jadeyegowda, M. and Kiesecker, J.M., 2022. Potential for artificial intelligence (AI) and machine learning (ML) applications in biodiversity conservation, managing forests, and related services in India. Sustainability, 14(12): 7154. doi.org/10.3390/su14127154
Siddiqui, M.N., 2023. AI Revolution: Empowering The Future With Artificial Intelligence. Pakistan Journal of International Affairs, 6(3).
Singh, S.K., Rathore, S. and Park, J.H., 2020. Blockiotintelligence: A blockchain-enabled intelligent IoT architecture with artificial intelligence. Future Generation Computer Systems, 110: 721-743. DOI:10.52337/pjia.v6i4.961
Siripurapu, S., Darimireddy, N.K., Chehri, A., Sridhar, B. and Paramkusam, A., 2023. Technological advancements and elucidation gadgets for Healthcare applications: An exhaustive methodological review-part-I (AI, big data, block chain, open-source technologies, and cloud Computing). Electronics, 12(3): 750. doi.org/10.3390/electronics12030750
Skulimowski, A.M. and Bañuls, V.A., 2021. AI alignment of disaster resilience management support systems. Artificial Intelligence and Soft Computing: 20th International Conference, ICAISC 2021, Virtual Event, June 21–23, 2021, Proceedings, Part II 20, DOI:10.1007/978-3-030-87897-9_32
Stahl, B.C., 2021. Artificial Intelligence for a Better Future: An Ecosystem Perspective on the Ethics of AI and Emerging Digital Technologies. Springer Nature, 128 pages. DOI: 10.1007/978-3-030-69978-9.
Stefanni, S., Mirimin, L., Stanković, D., Chatzievangelou, D., Bongiorni, L., Marini, S., Modica, M.V., Manea, E., Bonofiglio, F. and del Rio Fernandez, J., 2022. Framing cutting-edge integrative deep-sea biodiversity monitoring via environmental DNA and optoacoustic augmented infrastructures. Frontiers in Marine Science, 8: 797140. DOI:10.3389/fmars.2021.797140
Stohlgren, T.J. and Schnase, J.L., 2006. Risk analysis for biological hazards: what we need to know about invasive species. Risk Analysis: An International Journal, 26(1): 163- 173. DOI:10.1111/j.1539-6924.2006.00707.x
Sun, Z., Sandoval, L., Crystal-Ornelas, R., Mousavi, S.M., Wang, J., Lin, C., Cristea, N., Tong, D., Carande, W.H. and Ma, X., 2022. A review of earth artificial intelligence. Computers and Geosciences, 159: 105034. DOI:10.1016/j.cageo.2022.105034
Tambe, P., Cappelli, P. and Yakubovich, V., 2019. Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4): 15-42. DOI:10.2139/ssrn.3263878
Thomas, S.M., Simmons, G.S. and Daugherty, M.P., 2017. Spatiotemporal distribution of an invasive insect in an urban landscape: introduction, establishment and impact. Landscape Ecology, 32: 2041-2057. DOI:10.1007/s10980-017-0565-0
Traore, B.B., Kamsu-Foguem, B. and Tangara, F., 2018. Deep convolution neural network for image recognition. Ecological Informatics, 48, 257-268. DOI:10.1016/j.ecoinf.2018.10.002
Valicharla, S.K., Li, X., Greenleaf, J., Turcotte, R., Hayes, C. and Park, Y.L., 2023. Precision detection and assessment of ash death and decline caused by the emerald ash borer using drones and deep learning. Plants, 12(4): 798. DOI: 10.3390/plants12040798
Valiente Banuet, A., Aizen, M.A., Alcántara, J.M., Arroyo, J., Cocucci, A., Galetti, M., García, M.B., García, D., Gómez, J.M. and Jordano, P., 2015. Beyond species loss: the extinction of ecological interactions in a changing world. Functional Ecology, 29(3): 299-307. doi.org/10.1111/1365-2435.12356.
Van Cauwenberghe, A., 2023. Contributvan Rees, C.B., Hand, B.K., Carter, S.C., Bargeron, C., Cline, T.J., Daniel, W., Ferrante, J.A., Gaddis, K., Hunter, M. E. and Jarnevich, C.S., 2022. A framework to integrate innovations in invasion science for proactive management. Biological Reviews, 97(4): 1712-1735. DOI:10.1111/brv.12859.
Vaz, A.S., Kueffer, C., Kull, C.A., Richardson, D.M., Schindler, S., Muñoz-Pajares, A.J., Vicente, J.R., Martins, J., Hui, C. and Kühn, I., 2017. The progress of interdisciplinarity in invasion science. Ambio, 46: 428-442. DOI: 10.1007/s13280-017-0897-7.
Venette, R.C., Gordon, D.R., Juzwik, J., Koch, F.H., Liebhold, A.M., Peterson, R.K., Sing, S.E. and Yemshanov, D., 2021. Early intervention strategies for invasive species management: connections between risk assessment, prevention efforts, eradication, and other rapid responses. Invasive species in forests and rangelands of the United States: a comprehensive science synthesis for the United States Forest Sector, 111-131. DOI:10.1007/978-3-030-45367-1_6.
Viscaino, M., Bustos, J.T., Muñoz, P., Cheein, C.A. and Cheein, F.A., 2021. Artificial intelligence for the early detection of colorectal cancer: A comprehensive review of its advantages and misconceptions. World Journal of Gastroenterology, 27(38): 6399. DOI:10.3748/wjg.v27.i38.6399.
VoPham, T., Hart, J.E., Laden, F. and Chiang, Y.Y., 2018. Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology. Environmental Health, 17(1): Article 40, 1–6. DOI: 10.1186/s12940-018-0386-x
Wäldchen, J. and Mäder, P., 2018. Machine learning for image based species identification. Methods in Ecology and Evolution, 9(11): 2216-2225. DOI:10.1186/s12940-018-0386-x.
Warziniack, T., Haight, R.G., Yemshanov, D., Apriesnig, J.L., Holmes, T.P., Countryman, A.M., Rothlisberger, J.D. and Haberland, C., 2021. Economics of invasive species. Invasive species in forests and rangelands of the United States: a comprehensive science synthesis for the United States Forest Sector, 305-320. DOI:10.1007/978-3-030-45367-1_14.
Way, M. and Van Emden, H., 2000. Integrated pest management in practice-pathways towards successful application. Crop Protection, 19(2): 81-103. DOI: 10.1016/S0261-2194(99)00103-2
Werner, R.M. and Asch, D.A., 2005. The unintended consequences of publicly reporting quality information. Jama, 293(10): 1239-1244. DOI:10.1016/S0261-2194(99)00098-8.
Westbrooks, R.G., Manning, S.T. and Waugh, J.D., 2022. Early detection and rapid response: a cost-effective strategy for minimizing the establishment and spread of new and emerging invasive plants by global trade, travel and climate change. In Invasive species and global climate change (pp. 307-326). CABI GB. DOI:
10.1079/9781780641645.0305
Whittlestone, J., Nyrup, R., Alexandrova, A., Dihal, K. and Cave, S., 2019. Ethical and societal implications of algorithms, data, and artificial intelligence: a roadmap for research. London: Nuffield Foundation.
Wong, B.B. and Candolin, U., 2015. Behavioral responses to changing environments. Behavioral Ecology, 26(3): 665- 673. DOI:10.1093/beheco/aru183.
Wong, J., Henderson, T. and Ball, K., 2022. Data protection for the common good: Developing a framework for a data protection-focused data commons. Data & Policy, 4, e3. DOI:10.1080/1369118X.2025.2504608.
Xu, Y., Zhang, X., Li, H., Zheng, H., Zhang, J., Olsen, M.S., Varshney, R.K., Prasanna, B.M. and Qian, Q., 2022. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Molecular Plant, 15(11): 1664-1695. DOI:10.1016/j.molp.2022.09.001.
Yang, L., Driscol, J., Sarigai, S., Wu, Q., Chen, H. and Lippitt, C.D., 2022. Google Earth Engine and artificial intelligence (AI): a comprehensive review. Remote Sensing, 14(14): 3253. DOI:10.3390/rs14143253
Yue, P., Shangguan, B., Hu, L., Jiang, L., Zhang, C., Cao, Z. and Pan, Y., 2022. Towards a training data model for artificial intelligence in earth observation. International Journal of Geographical Information Science, 36(11): 2113-2137. DOI:10.1080/13658816.2022.2087223.
Zhai, C., Wibowo, S., and Li, L.D., 2024. The effects of overreliance on AI dialogue systems on students' cognitive abilities: a systematic review. Smart Learning Environments, 11(1): 1–37.DOI:10.1186/s40561-024-00316-7
Zhang, M., Zou, Y., Xiao, S. and Hou, J., 2023. Environmental DNA metabarcoding serves as a promising method for aquatic species monitoring and management: A review focused on its workflow, applications, challenges and prospects. Marine Pollution Bulletin, 194: 115430. DOI:10.1016/j.marpolbul.2023.115430