Adessi, A., Cruz de Carvalho, R., De Philippis, R., Branquinho, C. and Marques da Silva, J., 2018. Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biology and Biochemistry, 116:67–69.
https://doi.org/10.1016/j.soilbio.2017.10.002.
Ahmadi, H., 2012. Applied Geomorphology. University of Tehran, 706p.
Al-Sodany, Y. M., Issa, A. A., Kahil, A. A. and Ali, E. F., 2018. Diversity of Soil Cyanobacteria in Relation to Dominant Wild Plants and Edaphic Factors at Western Saudi Arabia. Annual Research & Review in Biology, 26(3): 1-14.
https://www.researchgate.net/publication/325061822
Al-Wathnani, H., Ara, I., Tahmaz, R. R. and Bakir, M. A., 2012. Antibacterial activities of the extracts of cyanobacteria and green algae isolated from desert soil in Riyadh, Kingdom of Saudi Arabia. African Journal of Biotechnology, 38: 9223-9229.
https://doi.org/10.5897/AJB11.3390
Andreeva, N.A., Melnikov, V.V. and Snarskaya, D.D., 2020. The role of cyanobacteria in marine ecosystems. Russian Journal of Marine Biology, 46: 154–165.
Antonaru, L. A., Selinger, V. M., Jung, P., Di Stefano, G., Sanderson, N. D., Barker, L., Wilson, D. J., Budel, B., Cannffe, D. P., Billi, D. and Numberg, D. J., 2023. Common loss of far-red light photoacclimation in cyanobacteria from hot and cold deserts: a case study in the Chroococcidiopsidales. Nature, 9p.
https://doi.org/10.1038/s43705-023-00319-4
Bhatnagar, A., Makandar, M. B., Garg. M. K. and Bhatnagar, M., 2008. Community structure and diversity of cyanobacteria and green algae in the soils of Thar Desert (India). Journal of Arid Environment, 72: 73-83.
https://doi.org/10.1016/j.jaridenv.2007.05.007
Billi, D., Baque, M., Verseux, C., Rothschild, L. and De Vera, J. P., 2017. "Desert Cyanobacteria: Potential for Space and Earth Applications." 133-145 In: Adaption of Microbial Life to Environmental Extremes. Stan-Lotter, H. and Fendrihan, H. (eds.), Springer International Publishing AG 2017. DOI:
10.1007/978-3-319-48327-6_6
Bu, C., Wu, S., Yang, Y., Zheng, M. and Neilan, B., 2014. Identification of factors influencing the restoration of cyanobacteria-dominated biological soil crusts. PLoS ONE 9 (3),e90049. https://doi.org/10.1371/journal.pone.0090049.
Büdel, B., Williams, W. J. and Reichenberger, H., 2018. Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf Savannah, Queensland. Aust. Biogeosci. 15, 491–505. doi: 10.5194/bg-15-491-2018
Cano-Diaz, C., Mateo, P., Muoz-Martیn, M. A. and Maestre, F. T., 2018. Diversity of biocrust-forming cyanobacteria in a semiarid gypsiferous site from Central Spain. Journal of Arid Environment, 151: 83–89. doi: 10.1016/j.jaridenv.2017.11.008
Chamizo, S., Adessi, A., Mugnai, G., Simiani, A. and De Philippis, R., 2018. Soil type and cyanobacteria species influence the macromolecular and chemical characteristics of the polysaccharidic matrix in induced biocrusts. Microb. Ecol. 78 (2), 482–493.
https://doi.org/10.1007/s00248-018-1305-y.
Chen, L., Xie, Z., Hu, C., Li, D., Wang, G., Liu, Y., 2006a. Man-made desert algal crusts as affected by environmental factors in Inner Mongolia. China. Journal of Arid Environment, 67 (3): 521–527.
https://doi.org/10.1016/j.jaridenv.2006.02.018
Chilton, A. M., Nguyen, S. T. T., Nelson, T. M., Pearson, L. A. and Neilan, B. A., 2022. Climate dictates microbial community composition and diversity in Australian biological soil crusts (biocrusts). Environmental Microbiology, 24:5467-5482.
https://doi.org/10.1111/1462-2920.16098
Couradeau, E., Giraldo-Silva, A., De Martini, F., Garcia-Pichel, F., 2019. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere. Microbiome, 7(55):1-13.
https://doi.org/10.1186/s40168-019-0661-2
Eldridge David J, R.S., Travers Samantha, K., Bowker, M.A., Maestre, F.T., Ding, J., Havrilla, C., Rodriguez-Caballero, E., Barger, N., Weber, B., Antoninka, A., Belnap, J., Chaudhary, B., Faist, A., Ferrenberg, S., Huber-Sannwald, E., Issa, O.M. and Zhao, Y., 2020. The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Global Change Biology, 26: 6003–6014.
Etemadifar, Z. and Derik Vand, P., 2013. The biology of cyanobacteria. University of Isfahan, 237p.
-Etemadi-Khah, A., Pourbabaie, A., Alikhani, H. and Noroozi, M., 2017. Isolation and identification of cyanobacteria from Kavir National Park hypersaline soils. Iranian Journal of Soil and Water Research, 48(3): 625-637. DOI:
10.22059/ijswr.2017.212139.667506
Fattahi, S. M., Soroush, A. and Huang, N., 2020. Wind erosion control using inoculation of aeolian sand with cyanobacteria. Land Degradation and Development, 31(15): 1-13.
https://doi.org/10.1002/ldr.3590
fixing chemicals for rapid induction of biological soil crust formation, Arid Land Resources
Garcia Pichel, F. and Pringualt, O., 2001. Cyanobacteria track water in desert soil. Nature, 413, 380-381. https://doi.org/10.1038/35096640
Garcia-Pichel, F., Lopez-Cortes, A. and Nubel, U., 2001. Phylogenetic and Morphological Diversity of Cyanobacteria in Soil Desert Crusts from the Colorado Plateau. Applied Environmental Microbiology, 67(4): 1902-1910. doi:
10.1128/AEM.67.4.1902-1910.2001
Garcia-Pichel, F. and Wojciechowski, M. F., 2009. The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS ONE 4 (11), e7801. https://doi.org/10.1371/journal. pone.0007801
Gaysina, L. A., Bohunicka, M., Hazukova, V., and Johansen, J. R., 2018. "Biodiversity of terrestrial cyanobacteria of the South Ural region. Cryptogam". 39, 167–198. doi:10.7872/crya/v39.iss2.2018.167
Guangyin, Zh. and Youcai, Zh., 2017. 181-273.In: Pollution Control and Resource Recovery for Sewage Sludge. Chapter 5: Harvest of Bioenergy From Sewage Sludge by AnaerobicDigestion. Butterworth-Heinemann Pub, 394p.
https://doi.org/10.1016/C2016-0-01791-6
Hagemann, M., Henneberg, M., Felde, V. J. M. N. L., Drahorad, S. L., Berkowicz, S. M., Felix Henningsen, P., 2015. Cyanobacterial diversity in biological soil crusts along a precipitation gradient, Northwest Negev Desert. Israel. Microbial Ecology, 70: 219–230. doi: 10.1007/s00248-014-0533-z
Jung, P., Schermer, M., Briegel-Williams, L., Baumann, K., Leinweber, P., Karsten, U., Lehnert, L., Achilles, S., Bendix, J. and Budel, B., 2019. Water availability shapes edaphic and lithic cyanobacterial communities in the Atacama Desert. Journal of Phycology, 55: 1306-1318.
https://doi.org/10.1111/jpy.12908
Kakeh, J., Gorji, M., Mohammadi, M.H., Asadi, H., Khormali, F., Sohrabi, M., Cerd, A., 2020. Biological soil crusts determine soil properties and salt dynamics under arid climatic condition in Qara Qir. Iran. Science of the Total Environment, 732: 139168.
https://doi.org/10.1016/j.scitotenv.2020.139168.
Kashi Zenouzi, L., Kaboli, S. H., Khavazi, K. and Khosroshahi, M., 2022. Investigation of the Effect of Native Cyanobacteria in Sejzi Plain on Wind Erosion Control in the Laboratory. Quarterly Journal of Environmental Erosion Research, 12(2): 19-42. dor:
20.1001.1.22517812.1401.12.2.7.4
Kheirfam, H. and Asadzadeh, F., 2019. Feasibility of Moving Sands Stabilization in the Dried-up Beds of Lake Urmia using Inoculation and Stimulation of Soil Native Cyanobacteria. Applied Soil Research, 8(1): 31-43.
Kheirfam, H. and Roohi, M., 2020. Accelerating the formation of biological soil crusts in the newly dried-up lakebeds using the inoculation-based technique. Science of the Total Environment, 706, 136036.
Kheirfam, H., Zarei Darki, B., Sadeghi, S. H. and Homaee, M., 2015. Identification and proliferation of soil microorganisms in Marzanabad region with capability in applying for soil and water conservation. Iranian Journal of Ecological Agriculture, 6 (1): 213-226.
Khosroshahi, M., 2016. Iranian desert territory from the viewpoint of research. Iran Natue, 1 (1): 36-30. Doi:
10.22092/irn.2016.107527
Lacap-Bulger, D. C., Lee, K., Archer, S., Gillman, L. N., Lau, M. C. Y., Leuzinger, S., Lee, C., Maki, T., McKey, C. P., Perrott, J. K., Rios- Murillo, A., Warren-Rhodes, K. A., Hopkins, D. M. and Pointing, S. B., 2017. Global diversity of desert hypolithic cyanobacteria. Frontiers in Microbiology, 14p.
https://doi.org/10.3389/fmicb.2017.00867
Li, J.-Y., Jin, X.-Y., Zhang, X.-C., Chen, L., Liu, J.-L., Zhang, H.-M., Zhang, X., Zhang, Y.- F., Zhao, J.-H., Ma, Z.-S. and Jin, D., 2020. Comparative metagenomics of two distinct biological soil crusts in the Tengger Desert, China. Soil Biology and Biochemistry, 140:107637.
https://doi.org/10.1016/j.soilbio.2019.107637
Machado de Lima, N. M., Fernandes, V. M. C., Roush, D., Velasco Ayuso, S., Rigonato, J., Garcia-Pichel, F., 2019. The compositionally distinct cyanobacterial biocrusts from Brazilian savanna and their environmental drivers of community diversity. Frontirers in Microbiology, 10:2798. doi: 10.3389/fmicb.2019.02798
Maya, Y., Lopez-Cortes, A. and Soeldner, A., 2002. Cyanobacterial microbiotic crusts in eroded soils of a tropical dry forest in the Baja California peninsula, Mexico. Geomicrobiology Journal, 19:505–518.
https://doi.org/10.1080/01490450290098469.
Mazard, S., Penesyan, A., Ostrowski, M., Paulsen, I. T. and Egan, S., 2016. Tiny microbes with a big impact: the role of cyanobacteria and their metabolites in shaping our future. Marine Drugs 14, 97. doi:
10.3390/md14050097
Mehda, S., Munoz-Martin, M. A., Oustani, M., Hamdi-Aissa, B., Perona, E. and Mateo, P., 2021. Microenvironmental conditions derive the differential cyanobacterial community composition of biocrust from the Sahara Desert. Microorganisms, 9:1-27.
https://doi.org/10.3390/microorganisms9030487
Miralles, I., Soria, R., Lucas-Borja, M.E., Soriano, M. and Ortega, R., 2020. Effect of Biocrusts on Bacterial Community Composition at Different Soil Depths in Mediterranean Semi-arid Ecosystems. Science of The Total Environment, 733:137613.
https://doi.org/10.1016/j.scitotenv.2020.138613
Moghtaderi, A., Taghavi, M. and Rezaie, R., 2009. Cyanobacteria in Biological Soil Crust of Chadormalu Area, Bafq Region in Central Iran. Pakistan Journal of Nutrition, 8(7): 1083-1092. DOI:
10.3923/pjn.2009.1083.1092
Mugnai, G., Rossi, F., Chamizo, S., Adessi, A. and De Philippis, R., 2020. The role of grain size and inoculum amount on biocrust formation by Leptolyngbya ohadii. CATENA, 184, 104248.
https://doi.org/10.1016/j.catena.2019.104248
Mugnai, G., Rossi, F., Martin Noah Linus Felde, V.J., Colesie, C., Büdel, B., Peth, S., Kaplan, A. and De Philippis, R., 2018. The potential of the cyanobacterium Leptolyngbya ohadii as inoculum for stabilizing bare sandy substrates. Soil Biology and Biochemistry, 127, 318–328.
https://doi.org/10.1016/j.soilbio.2018.08.007
Omari, H., Pietrasiak, N., Ferrenberg, S. and Nishiguchi, M. K., 2022. A spatiotemporal framework reveals contrasting factors shape biocrust microbial and microfaunal communities in the Chihuahuan Desert. https://doi.org/10.1016/j.geoderma.2021.115409
Pandey, K.D., Shukla, P.N., Giri, D. D. and Kashyap, A.K., 2005. Cyanobacteria in alkaline soil and the effect of cyanobacteria inoculation with pyrite amendments on their reclamation. Biology and Fertility of Soil, 41:451-457. https://doi.org/10.1007/s00374-005-0846-7
Park, C.; Li, X.; Jia, R.; Hur, J., 2017. Combined application of cyanobacteria with soil for fixing chemicals for rapid induction of biological soil crust information. Arid Land Research and Management, 31(1):81-93.
https://doi.org/10.1080/15324982.2016.1198842
Patova, E. N., Novakovskaya, I. V. and Deneva, S. V., 2018. The influence of edaphic and orographic factors on algal diversity in biological soil crusts on bare spots in the polar and subpolar Urals. Eurasian Soil Science 51:309–320. doi: 10.1134/ s1064229318030109
Pushkareva, E., Pessi, I. S., Namsaraev, Z., Mano, M. J., Elster, J. and Wilmotte, A., 2019. Cyanobacteria inhabiting biological soil crusts of a polar desert: Sor Rondane Mountains, Antarctica. Systematic and Applied in Microbiology, 11p.
https://doi.org/10.1016/j.syapm.2018.01.006
Rego, A., Raio, F., Martins, T. P., Ribeiro, H., Sousa, A. G., Seneca, J., Baptista, M. S., Lee, C. K., Cary, C., Ramos, V., Carvalho, M. F., Leao, P. N. and Magalhaes, C., 2019. Actinobacteria and cyanobacteria diversity in terrestrial antarctic microenvironments evaluated by culture-dependent and independent methods. Frontiers in Microbiology, 10: 1-19.
https://doi.org/10.3389/fmicb.2019.01018
Reynolds, J.F., Smith, D. M. S., Lambin, E .F., Turner, B. L., Mortimore, M., Batterbury, S. P. J., Downing, T. E., Dowlatabadi, H., Fernandez, R. J., Herrick, J. E., Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T., Maestre, F. T., Ayarza, M. and Walker, B., 2007. Global desertification: building a science for dryland development. Science (New York, N.Y.) 316, 847–851.
DOI: 10.1126/science.1131634
-Ritchie, R. J., 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. 89(1): 27-41. doi: 10.1007/s11120-006-9065-9.
Rodriguez-Caballero Emilio, B.J., Burkhard, B., Crutzen Paul, J., Andreae Meinrat, O., Ulrich, Poeschl, Weber, Bettina, 2018. Dryland photoautotrophic soil surface communities endangered by global change. Nature Geoscience, 11: 185-189. https://doi.org/10.1038/s41561-018-0072-1
Roman, J. R., Roncero-Ramos, B., Rodriguez-Caballero, E., Chamizo, S. and Canton, Y., 2021. Effect of water availability on induced cyanobacterial biocrust development. Catena, 197: 104988.
https://doi.org/10.1016/j.catena.2020.104988
Roman, J. R., Chamizo, S., Roncero-Ramos, B., Adessi, A., De Philippis, R. and Canton, Y., 2021. Overcoming field barriers to restore dryland soils by cyanobacteria inoculation. Soil and Tillage Research, 207: 104799.
https://doi.org/10.1016/j.still.2020.104799
Roncero-Ramos, B., Munoz-Martin, M., Chamizo, S., Fernلndez-Valbuena, L., Mendoza, D., Perona, E., 2019. Polyphasic evaluation of key cyanobacteria in biocrusts from the most arid region in Europe. PeerJ. 7:e6169. doi: 10.7717/peerj.6169
Song, G., Li, X. and Hui, R., 2020. Biological soil crusts increase stability and invasion resistance of desert revegetation communities in northern China. Ecosphere, 11(2):e3043.
https://doi.org/10.1002/ecs2.3043
Temraleeva, A. D., 2018. Cyanobacterial diversity in the soils of Russian dry teppe sand semi deserts. Microbiology, 87:249–260. doi: 10.1134/s0026261718020169
Wang, J., Zhang, P., Bao, J.-T., Zhao, J.-C., Song, G., Yang, H.-T., Huang, L., He, M.-Z. and Li, X.-R., 2020. Comparison of cyanobacterial communities in temperate deserts: a cue for artificial inoculation of biological soil crusts. Science of the Total Environment, 745: 140970.
https://doi.org/10.1016/j.scitotenv.2020.140970
Weber, B., Büdel, B. and Belnap, J., 2016. "Biological soil crusts: an organizing principle in drylands". In: Belnap, J., Weber, Bettina, Büdel, Burkhardr (Eds.), Chapter 1 Biological Soil Crusts as an Organizing Principle in Drylands. Springer, Berlin, pp. 3–13e.
Williams, W., Eldridge, D. and Alchin, B. M., 2008. Grazing and drought reduce cyanobacterial soil crusts in an Australian Acacia woodland. Journal of Arid Environment, 72: 1064-1075.
https://doi.org/10.1016/j.jaridenv.2007.11.017
Wiltbank, L. B. and Kehoe, D. M., 2019. Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat. Rev. Microbiol. 17: 37–50. doi: 10.1038/s41579-018-0110-4.
Xiao, R., Yang, X., Li, M., Li, X.,Wei, Y. Z., Cao, M., Ragauskas, A., Thies, M., Ding, J. H. and Zheng, Y., 2018. Investigation of composition, structure and bioactivity of extracellular polymeric substances from original and stress-induced strains of Thraustochytrium striatum. Carbohydrate Polymers, 195: 515–524.
https://doi.org/10.1016/j.carbpol.2018.04.126
Zhang, B., Li, R., Xiao, P., Su, Y., and Zhang, Y., 2015. Cyanobacterial composition and spatial distribution based on pyrosequencing data in the Gurbantunggut Desert, northwestern China. J. Basic Microbiol. 56, 308–320. doi: 10.1002/jobm.201500226
Zhao, Y., Jia, R. L. and Wang, J., 2019. Towards stopping land degradation in drylands: water saving techniques for cultivating biocrusts in situ. Land Degradation and Development, 30, 2336–2346.
https://doi.org/10.1002/ldr.3423