Efficiency of medicinal and aromatic plants’ essential oil for producing antimicrobial products

Document Type : Scientific Letters

Authors

1 Assistant Professor, Medicinal Plants Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

2 Professor, Medicinal Plants Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

3 Ph. D in Plant physiology, Natural Science faculty, Tabriz University, Tabriz, Iran.

10.22092/irn.2023.359190.1471

Abstract

Infectious diseases are caused in humans by different microorganisms, like fungi, bacteria, and viruses. The importance of making new drugs with suitable performance and high efficiency is inevitable because of the resistance of fungi and bacteria against chemical drugs and the mutability of viruses. In addition to chemical and synthetic drugs, herbal products, especially plant oil, could be helpful, playing a complementary role. For this purposethe biological effects of plant essential oils, including antifungal, antibacterial, and antiviral effects, were reviewed by identifying chemical compounds of endemic aromatic and medicinal plants and previous studies of the pharmacological effect of these compounds. This survey shows that, among the studied medicinal plants, thyme, marjoram, some mint species, rosemary, clove, geranium, cinnamon, and cumin have the most antifungal effect. The antibacterial effects of lavender, thyme, mint, cinnamon, clove, eucalyptus, sage and tea tree have been confirmed in several studies. Also, lavender, sage, black seed, basil, and eucalyptus show antiviral effects. Therefore, medicinal plants, particularly, plant essential oil could be used to produce antifungal, antibacterial, and antiviral drugs.

Keywords


Abou Baker, D.H., Amarowicz, R., Kandeil, A., Ali, M.A. and Ibrahim, E.A., 2021. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus. Journal of Agriculture and Food Research, 4: 100135.
Allahghadri, T., Rasooli, I., Owlia, P., Nadooshan, M.J., Ghazanfari, T., Taghizadeh, M. and Astaneh, S.D., 2010. Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran. Journal of Food Science, 75(2): 54-61.
Bachir, R.G. and Benali, M., 2012. Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pac J Trop Biomed, 2(9):739-42. 
Behmanesh, F., Pasha, H., Sefidgar, A.A., Taghizadeh, M., Moghadamnia, A.A., Adib Rad, H. and Shirkhani, L., 2015. Antifungal Effect of Lavender Essential Oil (Lavandula angustifolia) and Clotrimazole on Candida albicans: An in Vitro Study. Scientifica (Cairo), 261397.
Benabdelkader, T., Zitouni, A., Guitton, Y., Jullien, F., Maitre, D., Casabianca, H., Legendre, L. and Kameli, A., 2011. Essential oils from wild populations of Algerian Lavandula stoechas L.: composition, chemical variability, and in vitro biological properties. Chemistry & Biodiversity, 8: 937–53.
Bozin, B., Mimica-Dukic, N., Samojlik, I. and Jovin, E., 2007. Antimicrobial and antioxidant properties of rosemary (Rosmarinus officinalis L.) and sage (Salvia offcinalis L.; Lamiaceae) essential oils. Journal of Agricultural and Food Chemistry, 55: 7879–7885.
Brochot, A., Guilbot, A., Haddioui, L. and Roques, C., 2017. Antibacterial, antifungal, and antiviral effects of three essential oil blends. MicrobiologyOpen, 6: e00459.
Chouhan, S., Sharma, K. and Guleria, S., 2017. Antimicrobial activity of some essential oils present status and future perspectives. Medicines, 4: 58.
San Chang, J., Wang, K.C., Yeh, C.F., Shieh, D.E. and Chiang, L.C., 2013. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of ethnopharmacology, 145(1): 146-151.
Careddu, D. and Pettenazzo, A., 2018. Pelargonium sidoides extract EPs 7630: a review of its clinical efficacy and safety for treating acute respiratory tract infections in children. International Journal of General Medicine, 11:91-98.
Condò, C., Anacarso, I., Sabia, C., Iseppi, R., Anfelli, I., Forti, L., de Niederhäusern, S., Bondi, M. and Messi, P., 2018. Antimicrobial activity of spices essential oils and its effectiveness on mature biofilms of human pathogens. Natural Product Research, 1–8.
Cutillas, A-B., Carrasco, A., Martinez-Gutierrez, R., Tomas, V. and Tudela, J., 2016. Salvia offcinalis L. Essential oil from Spain: Determination of composition, antioxidant capacity, antienzymatic and antimicrobial bioactivitie. The International Journal of Laboratory Hematology, 38: 42–49.
D’Auria, F.D., Tecca, M., Strippoli, V., Salvatore, G., Battinelli, L. and Mazzanti, G., 2005. Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Medical Mycology, 43: 391–396.
D’agostino, M., Tesse, N., Frippiat, J.P., Machouart, M. and Debourgogne, A., 2019. Essential Oils and Their Natural Active Compounds Presenting Antifungal Properties. Molecules, 24: 3713.
Dabiri, M. and Sefidkon, F. 2003. Chemical composition of Nepeta crassifolia Boiss. & Buhse oil from Iran. Flavour Fragrance Journal, 18: 225-227.
Daferera, D.J., Ziogas, B.N. and Polissiou, M.G., 2003. The effctiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protection, 22: 39–44.
De Oliveira, J.R., Vilela, P.G.D.F., de Almeida, R.B., de Oliveira, F.E., Carvalho, C.A.T., Camargo, S.E.A., Jorge, A.O.C. and de Oliveira, L.D., 2019. Antimicrobial activity of noncytotoxic concentrations of Salvia officinalis extract against bacterial and fungal species from the oral cavity. General Dentistry, 67: 22–26.
Essid, R., Hammami, M., Gharbi, D., Karkouch, I., Hamouda, T. B., Elkahoui, S., Limam, F. and Tabbene, O., 2017. Antifungal mechanism of the combination of Cinnamomum verum and Pelargonium graveolens essential oils with fluconazole against pathogenic Candida strains, Applied Microbiology and Biotechnology, 101: 6993–7006.
Fani, M. and Kohanteb, J., 2017. In: vitro antimicrobial activity of Thymus vulgaris essential oil against major oralpathogens. Journal of Evidence-Based Complementary and Alternative Medicine, 22(4): 660–666.
Fu, Z., Wang, H., Hu, X., Sun, Z. and Han, C., 2013. The pharmacological properties of salvia essential oils. Journal of Applied Pharmaceutical Science, 3: 122–127.
Herman, A., 2014. Comparison of antimicrobial activity of essential oils, plant extracts and methylparaben in cosmetic emulsions: 2 months study. Indian Journal of Microbiology, 54: 361–364.
Jahansooz, F., Sefidkon, F., Najafi, A., Ebrahimzadeh, H. and Najafi, M.S., 2012. Comparison of Essential Oils of Bunium persicum (Boiss.) Populations Grown in Iran, Pakistan and India, Journal of Essential Oil Bearing Plants, 15 (5): 761-765.
Jianu, C., Pop, G., Gruia, A.T. and Horhat, F.G., 2013. Chemical composition and antimicrobial activity of essential oils of lavender (Lavandula angustifolia) and lavandin (Lavandula x intermedia) grown in Western Romania. International Journal of Agriculture and Biology, 15: 772–776.
Karpinski, T. M., 2020. Essential Oils of Lamiaceae Family Plants as Antifungals Biomolecules, 10: 103.
Khubeiz, M.J., Mansour, G., Zahraa, B., 2016. Chemical compositions and antimicrobial activity of leaves Eucalyptus camaldulensis essential oils from four Syrian samples. International Journal of Current Pharmaceutical Research, 7: 251–257.
Ksouri, S., Djebir, S., Bentorki, A.A., Gouri, A.; Hadef, Y. and Benakhla, A., 2017. Antifungal activity of essential oils extract from Origanum floribundum Munby, Rosmarinus officinalis L. and Thymus ciliatus Desf. Against Candida albicans isolated from bovine clinical mastitis. Journal of Medical Mycology, 27: 245–249.
Kulkarni, S. A., Nagarajan, S. K., Ramesh, V., Palaniyandi, V., Selvam, S. P. and Madhavan, T., 2020. Computational evaluation of major components from plant essential oils as potent inhibitors of SARSCoV-2 spike protein. Journal of Molecular Structure, 1221:128823.
Loizzo, M.R., Saab, A.M., Tundis, R., Statti, G.A., Menichini, F., Lampronti, I., Gambari, R., Cinatl, J. and Doerr, H.W., 2008. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species, Chemistry & Biodiversity, 5 (3): 461–470.
Lima, L.M., Babakhani, B., Boldaji, S.A.H., Asadi, M. and Boldaji, R.M., 2013. Essential oils composition and antibacterial activities of Eucalyptus camaldulensis Dehn International Journal of Medicinal and Aromatic Plants, 3 (2): 214–219.
Liu, Q., Meng, X., Li, Y., Zhao, C.-N., Tang, G.-Y. and Li, H-B., 2017. Antibacterial and Antifungal Activities of Spices. International Journal of Molecular Sciences, 18: 1283.
Mahboubi, M. and Haghi, G., 2008. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. Journal of Ethnopharmacology, 119: 325–327.
Marjanovi´c-Balaban, Ž., Stanojevi´c, L., Kalaba, V., Stanojevi´c, J., Cvetkovi´c, D., Caki´c, M. and Gojkovi´c, V., 2018. Chemical composition and antibacterial activity of the essential oil of Mentha piperita L. The Quality of Life, 9: 5–12.
Mbadiko, C. M., Inkoto, C.L., Gbolo, B.Z., Lengbiye, E.M., Kilembe, J.T., Matondo, A., Mwanangombo, D.T., Ngoy, E.M., Bongo, G.N., Falanga, C.M., Tshibangu, D.S.T., Tshilanda, D., D., Ngbolua, K-T-N. and Mpiana, P. T., 2020. A Mini Review on the Phytochemistry, Toxicology and Antiviral Activity of Some Medically Interesting Zingiberaceae Species. Journal of Complementary and Alternative Medical Research, 9(4): 44-56.
Minooeianhaghighi, M.H., Sepehrian, L. and Shokri, H., 2017. Antifungal effects of Lavandula binaludensis and Cuminum cyminum essential oils against Candida albicans strains isolated from patients with recurrent vulvovaginal candidiasis. Journal of Medical Mycology, 27: 65–67.
Nasir, M., Tafess, K. and Abate, D., 2015. Antimicrobial potential of the Ethiopian Thymus schimperi essential oil in comparison with others against certain fungal and bacterial species. BMC Complementary and Alternative Medicine, 15: 260–265. 
Nouri, A., Mirabzadeh, M., Safari, N. and Ebadi, M., 2020. Evaluation of Essential Oil Composition and Rosmarinic Acid Content in Lemon Balm (Melissa officinalis L.) Cultivated in South of Iran. Journal of Medicinal plants and By-product, 9(2): 159-166.
Pyankov, O.V., Usachev, E.V., Pyankova, O. and Agranovski, I.E., 2012. Inactivation of airborne influenza virus by tea tree and eucalyptus oils. Aerosol Science and Technology, 46(12): 1295-1302.
Pinto, E., Pina-Vaz, C., Salgueiro, L., Gonçalves, M. J., Costa-de-Oliveira, S., Cavaleiro, C., Palmeira, A., Rodrigues, A. and Martinez-de-Oliveira, J., 2006. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology, 55: 1367–1373.
Pourghanbari, G., Nili, H., Moattari, A., Mohammadi, A. and Iraji, A., 2016. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza virus (H9N2), Virus Disease, 27 (2): 170–178.
Roller, S., Ernest, N. and Buckle, J., 2009. The antimicrobial activity of high-necrodane and other lavender oils on methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA). Journal of Integrative and Complementary Medicine, 15: 275–279.
Sakkas, H. and Papadopoulou C., 2017. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. Journal of Microbiology and Biotechnology, 27(3): 429-438.
Salvatori, C., Barchi L., Guzzo F. and Gargari M., 2017. A comparative study of antibacterial and anti-inflammatory effects of mouthrinse containing tea tree oil. Oral & Implantology (Rome), 10(1): 59-70.
Santoyo, S., Cavero, S., Jaime, L., Ibañez, E., Señoráns, F. J. and Reglero, G., 2006. Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: Determination of optimal extraction parameters. Journal of Food Protection, 69: 369–375.
Schmidt, E., Jirovetz, L., Wlcek, K., Buchbauer, G., Gochev, V., Girova, T., Stoyanova, A. and Geissler, M., 2007. Antifungal Activity of Eugenol and Various Eugenol-Containing Essential Oils against 38 Clinical Isolates of Candida albicans. Journal of Essential Oil-Bearing Plants, 10: 421–429.
Schött, G., Liesegang, S., Gaunitz, F., Gleß, A., Basche, S., Hannig, C. and Speer, K., 2017.The chemical composition of the pharmacologically active Thymus species, its antibacterial activity against Streptococcus mutans and the antiadherent effects of T. vulgaris on the bacterial colonization of the in situ pellicle, Fitoterapia, 121: 118–128.
Sefidkon, F., Bahmanzadegan, A., Abravesh, Z. and Gooshegir, S.A., 2012. The best harvesting time of three Eucalyptus leaves to obtain more oil and 1,8-cineole content. Journal of Medicinal Plants and By-products, 2: 117-131.
Sefidkon, F., Asareh, M.H., Abravesh, Z. and Naderi, M., 2010. Seasonal variation in the essential oil and 1,8-cineole content of four Eucalyptus species (E. intertexta, E. platypus, E. leucoxylon and E. camaldulensis). Journal of Essential. Oil Bearing Plants, 13(5): 528-539.
Sefidkon, F. and Shaabani, A. 2004. Essential oil composition of Nepeta meyeri Benth. from Iran. Flavour Fragr. J., 19: 236-238 
Sefidkon, F., Dabiri, M. and Alamshahi, A., 2002. Analysis of the essential oil of Nepeta fissa C. A. Mey from Iran, Flavour Fragrance Journal,17: 89-90.
Segvi´c Klari´c., M.; Kosalec, I., Masteli´c, J., Piecková, E. and Pepeljnak, S., 2007. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol agai. nst moulds from damp dwellings. Letters in Applied Microbiology, 44: 36–42.
Sonboli, A., Babakhani, B. and Mehrabian, A.R., 2006. Antimicrobial activity of six constituents of essential oil from Salvia. Zeitschrift für Naturforschung C A Journal of Biosciences, 61(3-4):160-164.Silva J., Figueiredo P., Byler K., Setzer W., 2020. Essential oils as antiviral agents. Potential of essential oils to treat SARS-CoV-2 infection: an in-silico investigation. International Journal of Molecular Sciences, 21: 3426.
Sonboli, A., Salehi, P. and Yousefzadi, M. 2004. Antimicrobial Activity and Chemical Composition of the Essential Oil of Nepeta crispa Willd. from Iran. Zeitschrift für Naturforschung, C59 (9-10): 653-656. 
Sharifi-Rad, J., Ayatollahi, S. A., Varoni, E. M., Salehi, B., Kobarfard, F., Sharifi-Rad, M., Iriti, M. and Sharifi-Rad, M., 2017. Chemical composition and functional properties of essential oils from Nepeta schiraziana Boiss. Farmacia, 65 (5): 802-812.
Tardugno, R., Serio, A., Pellati, F., D’Amato, S., Chaves López, C., Bellardi, M.G., Di Vito, M., Savini, V., Paparella, A. and Benvenuti, S., 2018. Lavandula x intermedia and Lavandula angustifolia essential oils: Phytochemical composition and antimicrobial activity against foodborne pathogens. Natural Product Research, 33(22): 3330-3335.
Thuy, B.T.P., My, T.T.A., Hai, N.T.T., Hieu, LT., Hoa, T.T., Loan, H.T.P., Triet, N.T., Anh, T.T.V., Quy, P.T., Tat, P.V. Hue, N.V., Quang, D.T., Trung, N.T., Tung, V.T., Huynh, L.K. and Nhung, N.T.A., 2020. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega, 5 (14): 8312–8320.
Tshibangu, D.S.T., Matondo, A., Lengbiye, E.M., Inkoto, C.L., Ngoyi, E.M., Kabengele, C.N., Bongo, G.N., Gbolo, B. Z., Kilembe, J.T., Mwanangombo, D.T., Mbadiko, C.M., Mihigo, S.O., Tshilanda, D.D., Ngbolua, K., T-N., Mpiana, P.T., 2020. Possible Effect of Aromatic Plants and Essential Oils against COVID-19: Review of Their Antiviral Activity. Journal of Complementary and Alternative Medical Research, 11(1): 10-22.
Tshilanda, D.D., Ngoyi, E.M., Kabengele, C.N., Matondo, A., Bongo, G. N., Inkoto, C. L. and Mpiana, P. T., 2020. Ocimum species as potential bioresources against COVID-19: a review of their phytochemistry and antiviral activity. International Journal of Pathogen Research, 5(4): 42-54.
Vimalanathan, S. and Hudson, J., 2014. Anti-influenza virus activity of essential oils and vapors. American Journal of Essential Oils and Natural Products, 2(1): 47-53.
Wani, A.R., Yadav, K., Khursheed, A. and Rather M.A., 2021. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. microbial pathogenesis, 152: 104620.
Wei, Z. F., Zhao, R. N., Dong, L. J., Zhao, X. Y., Su, J. X., Zhao, M., Li, L., Bian, Y.J. and Zhang, L.J., 2018. Dual-cooled solvent-free microwave extraction of Salvia offcinalis L. essential oil and evaluation of its antimicrobial activity. Industrial Crops and Products, 120: 71–76.