The potential of entomopathogenic nematodes to biological control of Cydalima perspectalis (Lepidoptera: Crambidae)

Document Type : Scientific Letters

Authors

1 Research Expert, Research Institute of Forest and Rangelands, Agricultural Research Education and Extension Organization

2 Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran

3 Assistant Prof. Research Institute of Forest and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran

4 Research Expert, Deputy of Protection and Conservation, Forest, Range and Watershed Management Organization, Chalous, Iran

5 - Research Expert, Guilan Agricultural and Natural Resources Research Center, Agriculture Research, Education and Extension Organization(AREEO), Rasht, Iran

6 Associate Professor, Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

10.22092/irn.2022.357190.1439

Abstract

Entomopathogenic nematodes (EPNs) as biological control agents of pests offer an environmentally safe alternative. Advances in mass-production and formulation technology of EPNs, the discovery of numerous efficacious isolates, and the desirability of reducing pesticide usage have resulted in a surge of scientific and commercial interest in these nematodes. This paper will review the successful use of EPNs for the control of insect pests above ground in the world. So, the efficacy of two native isolates of EPNs was evaluated against Cydalima perspectalis (Lepidoptera: Crambidae) in laboratory conditions. The lethal concentration 50 (LC50) values of the Steinernema borjomiense and Oscheius myriophilus were 60.16 and 74.53 IJs/larva-1 on fifth instar larvae of C. perspectalis, respectively, after 48 hours at 25 °C and 60% relative humidity. These results revealed the good potential of EPNs in the biological control of C. perspectalis. In the field of biological pest control using EPNs in the country, in addition to the need for breakthroughs in the identification of EPNs isolates with high pathogenicity as well as formulation technology, the use of EPNs will need to be furthered through education, major changes in insecticides use pattern, legislative and further restrictions on chemical pesticides by organizations.

Keywords


Abate, B.A., Wingfield, M.J., Slippers, B. and Hurley, B.P., 2017. Commercialisation of entomopathogenic nematodes: should import regulations be revised. Biocontrol Science and Technology, 27(2): 149-68.
Abootorabi, E., 2014. Report of native isolate pathogenicity of Steinernema feltiae on tomato leafminer, Tuta absoluta. Biocontrol in Plant Protection, 1(2): 107-109.
Adams, B.J. and Nguyen, K.B., 2002. Taxonomy and systematic. In: Graugler, R. (Es) Entomopathogenic nematology. CAB international, pp. 1-33.
Akhani, H., Djamali, M., Ghorbanalizadeh, A. and Ramezani, E., 2010. Plant biodiversity of Hyrcanian relict forests, Iran: An overview of the flora, vegetation, palaeoecology and conservation. Pakistan Journal of Botany, 42: 231-258.
Arthurs, S., Heinz, K.M. and Prasifka, J.R., 2004. An analysis of using entomopathogenic nematodes against above-ground pests. Bulletin of Entomological Research, 94(4): 297-306.
Bedding, R.A. and Akhurst, R.J., 1974. Use of the nematode Deladenus siricidicola in the biological control of Sirex noctilio in Australia. Journal of the Australian Entomological Society, 13: 129-135.
Bedding, R.A. and Akhurst, R.J., 1975. A simple technique for the detection of insect parasitic Rhabditid nematodes in soil. Nematologica, 21: 109-110.
Beck, B., Brusselman, E., Nuyttens, D., Moens, M., Temmerman, F., Pollet, S., Van Weyenberg, S. and Spanoghe, P., 2014. Improving the biocontrol potential of entomopathogenic nematodes against Mamestra brassicae: Effect of spray application technique, adjuvants and an attractant. Pest Management Science. 70: 103-112.
Choo, H.Y., Kaya, H.K., Lee, S.M., Kim, T.O. and Kim, J.B., 1991. Laboratory evaluation of entomopathogenic nematodes, Steinernema carpocapsae and Heterorhabditis bacteriophora against some forest insect pests. Korean Journal of Applied Entomology, 30: 227-232.
Dara, S.K., 2019. The new integrated pest management paradigm for the modern age. Journal of Integrated Pest Management, 10(1): 12. https://doi.org/10.1093/jipm/pmz010
Darsouei, R., Karimi, J. and Shokoohi, E., 2014. Oscheius rugaoensis and Pristionchus maupasi, two new records of entomophilic nematodes from Iran. Russian Journal of Nematology, 22(2): 141-155.
De Waal, J.Y., Addison, M.F. and Malan, A.P., 2017. Evaluation of a South African isolate of Heterorhabditis zealandica (Rhabditida: Heterorhabditidae) for the control of codling moth, Cydia pomonella (L (Lepidoptera: Tortricidae) in field applications. International Journal of Pest Management. https:// doi.org/10.1080/09670874.2017.1342149
De Waal, J.Y., Malan, A.P. and Addison, M.F., 2013. Effect of humidity and a superabsorbent polymer formulation on the efficacy of Heterorhabditis zealandica (Rhabditida: Heterorhabditidae) to control codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Biocontrol Science and Technology, 23: 62-78.
Ebrahimi, L. and Niknam, G.H., 2011. Detection of thermal preference range of two endemic isolates of entomopathogenic nematodes, Steinernema feltiae (Steinernematidae, Tylenchina) and Heterorhabditis bacteriophora (Heterorhabditidae, Rhabditina) for application in biological control of insect pests. Journal of Sustainable Agriculture and Production Science, 21(2): 77-86.
Ebrahimi, L., Niknam, G.H. and Lewis, E.E., 2011. Lethal and sublethal effects of Iranian isolates of Steinernema feltiae and Heterorhabditis bacteriophora on the Colorado potato beetle, Leptinotarsa decemlineata. Bio Control, 56: 781-788.
Eivazian Kary, N., Rafiee, H.D., Mohammadi, D. and Afghahi, S., 2010. Efficacy of some geographical isolates of entomopathogenic nematodes against Leptinotarsa decemlineata (Say) (Col.: Chrysomelidae). Munis Entomology and Zoology, 5: 1066-1074.
Eivazian Kary, N., Golizadeh, A., Rafiee, H.D., Mohammadi, D., Afghahi, S., Omrani, M., et al., 2012. A laboratory study of susceptibility of Helicoverpa armigera (Hübner) to three species of entomopathogenic nematodes. Munis Entomology and Zoology, 7(1): 372-379.
Gaugler, R., 2002. Entomopathogenic nematology. The Centre for Agriculture and Bioscience International (CABI) Public Lacey ation. Wallingford, oxon, UK, 388p.
Gaugler, R., Campbell, J.F., Selvan, S. and Lewis, E.E., 1992. Large-scale inoculative releases of the entomopathogenic nematode Steinernema glaseri: Assessment 50 years later. Biological control, 2: 181-187. https://doi.org/10.1016/1049-9644(92)90057-K.
Gholami Ghavamabad, R., Talebi, A.A., Mehrabadi, M., Farashiani, M.E. and Pedram, M., 2021a. First report of Steinernema borjomiense (Rhabditida: Steinernematidae) from Iran; and its efficacy against two exotic invasive forest pests in laboratory condition. Russian Journal of Nematology, 29(2): 127-141.
Gholami Ghavamabad, R., Talebi, A.A. Mehrabadi, M., Farashiani, M.E. and Pedram, M., 2021b. First record of Oscheius myriophilus (Poinar, 1986) (Rhabditida: Rhabditidae) from Iran; and its efficacy against two economic forest trees pests, Cydalima perspectalis (Walker, 1859) (Lepidoptera: Crambidae) and Hyphantria cunea (Drury, 1773) (Lepidoptera: Erebidae) in laboratory condition. Journal of Nematology, 53: e2021-35.
Gottig, S. and Herz, A., 2018. Susceptibility of the Box tree pyralid Cydalima perspectalis Walker (Lepidoptera: Crambidae) to potential biological control agents Neem (NeemAzal®-T/S) and entomopathogenic nematodes (Nemastar®) assessed in laboratory bioassays and field trials. Journal of Plant Diseases and Protection, 125(4): 365-375.
Hassani-Kakhki, M., Karimi, J. and Hosseini, M., 2013. Efficacy of entomopathogenic nematodes against potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae) under laboratory conditions. Biocontrol Science and Technology, 23(2): 146-159.
Hassani-Kakhki, M., Karimi, J., Hosseini, M. and Heydari, Sh., 2012. Efficacy of entomopathogenic nematodes against potato tuber moth, Phthorimaea operculella Zeller (Lep.: Gelechiidae). 20th Iranian Plant Protection Congress, Shiraz University, Shiraz, Iran, 25–28 August, 987p.
Karimi, J. and Kharazi-pakdel, A., 2007. Incidence of natural infection of the white grub Polyphylla olivieri (Coleoptera: Scarabaeidae) with entomopathogenic nematodes in Iran. OILB/srop Bulletin, 30(1): 35-39.
Kaya, H.K., Aguillera, M.M., Alumai, A., Choo, H.Y., de la Torre, M., Fodor, A., Ganguly, S., Hazir, S., Lakatos, T., Pye, A., Wilson, M., Yamanaka, S., Yang, H. and Ehlers. R.U., 2006. Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries of regions of the world. Biological Control, 38(21): 134-155.
Kaya, H.K. and Stock, S.P., 1997. Techniques in insect nematology. In: Lacey, L.A. (Es) Manual of techniques in insect pathology. San Diego, CA: Academic Press. pp. 281-324.
Koppenhöfer A.M., Shapiro-Ilan, D.I. and Hiltpold, I., 2020. Nematodes in sustainable food production, frontiers in sustainable food systems. Entomopathogenic. Nematodes, 4: 1-14. https://doi.org/10.3389/fsufs.2020.00125
Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M. and Goettel, M.S., 2015. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132: 1-41.
Lephoto, T.E. and Gray, V.M., 2019. Oscheius basothovii n. sp. (Nematoda: Rhabditidae), a new entomopathogenic nematode isolated from an uncultivated grassland in South Africa. Archives of Phytopathology and Plant Protection, 52: 125-140.
Marvie Mohajer, M.R., 2004. Silviculture of the Oriental Beech (Fagus orientalis Lipsky); Experiences made in Caspian forests, north of Iran. Proceedings from the 7th International beech Symposium, IUFRO research group. 10-20 May, Tehran, Iran. pp. 13–15.
Navon, A., Nagalakshmi, V.K., Shlomit, L., Salame, L. and Glazer, I.E., 2002.
Ectiveness of entomopathogenic nematodes in an alginate gel formulation against Lepidopterous pests. Biocontrol Science and Technology, 12: 737-746.
Nikdel, M., Niknam, G.H. and Ye, W., 2011. Steinernema arasbaranense sp. n. (Nematoda: Steinernematidae), a new entomopathogenic nematode from Arasbaran forests, Iran. Nematologia Mediterranea, 39: 17-28.
Nikdel, M., Niknam, G., Shojaee, M., Askary, H. and Mohammadi, S.A., 2008. A survey on the response of the last instar larvae of acorn weevil, Curculio glandium (Col.: Curculionidae), to entomopathogenic nematodes Steinernema bicornutum and Heterorhabditis bacteriophora in the laboratory. Journal of Entomological Society of Iran, 28: 45-60.
Odendaal, D., Addison, M.F. and Malan, A.P., 2016. Evaluation of aboveground application of entomopathogenic nematodes for the control of diapausing codling moth (Cydia pomonella L.) under natural conditions. African Entomology, 24: 61-74.
Parvizi, R., 2003. Efficacy of insect pathogenic nematodes Steinernema sp. on control of trunk borer butterfly larvae in apple trees Synanthedon myopaeformis. Iranian Journal of Agricultural Science, 34(2): 303-311.
Platt, T., Stokwe, N.F. and Malan, A.P., 2019. A review of the potential use of entomopathogenic nematodes to control above-ground insect pests in South Africa. South African Journal of Enology and Viticulture, 41(1): 1-16. https://doi.org/10.21548/41-1-2424
Shannag, H. and Capinera, J., 1995. Evaluation of entomopathogenic nematode species for the control of melonworm (Lepidoptera: Pyralidae). Environmental Entomology, 24(1): 143-148.
Shapiro-Ilan, D.I., Arthurs, S.P. and Lacey, L.A., 2017. Microbial control of arthropod pests of orchards in temperate climates. In: Lacey, L.A. (Es) Microbial control of insect and mite pests. Amsterdam, Elsevier, pp. 253-267.
Shapiro-Ilan, D.I., Cottrell, T.E., Mizell, R.F. and Horton, D.L., 2016. Efficacy of Steinernema carpocapsae plus fire gel applied as a single spray for control of the lesser peachtree borer, Synanthedon pictipes. Biological Control, 94: 33-36.
Shapiro-Ilan, D.I., Cottrell, T.E., Mizell, R.F., Horton, D.L., Behle, R.W. and Dunlap, C.A., 2010. Efficacy of Steinernema carpocapsae for control of the lesser peachtree borer, Synanthedon pictipes: Improved aboveground suppression with a novel gel application. Biological control, 54: 23-28.
Shapiro-Ilan, D.I. and Gaugler. R., 2010. Nematodes: Rhabditida: Steinernematidae & Heterorhabditidae. In: Shelton, A. (Es) Biological Control: A Guide to Natural Enemies in North America. Cornell University. http://www. biocontrol.entomology.cornell.edu/pathogens/ nematodes.html
Shapiro, D.I., Gouge, D.H. and Koppenhöfer, A.M., 2002. Factors affecting field efficacy: analysis of case studies in cotton, turf, and citrus. In: Gaugler, R. (Es) Entomopathogenic Nematology, Wallingford: CABI Publishing, pp. 333-356.
Shapiro-Ilan, D.I., Gougeb, D.H., Piggott, S.J. and Patterson Fife, J., 2006. Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological Control, 38: 124-133.
Shapiro-Ilan, D.I., Richou, H. and Claudia, D., 2012. Entomopathogenic nematode production and application technology. Journal of Nematology, 44(2): 206-217.
Schroer, S. and Ehlers, R.U., 2005. Foliar application of the entomopathogenic nematode Steinernema carpocapsae for biological control of diamondback moth larvae (Plutella xylostella). Biological Control, 33(1): 81-86.
Stock, S.P. and Goodrich-Blair, H., 2012. Nematode parasites, pathogens and associates of insects and invertebrates of economic importance. In: Lacey, L.A. (Ed) Manual of techniques in invertebrate pathology. Elsevier Press, pp. 375-425.
Tofangsazi, N. Cherry, R.H. and Arthurs. S.P., 2014. Efficacy of commercial formulations of entomopathogenic nematodes against tropical sod webworm, Herpetogramma phaeopteralis (Lepidoptera: Crambidae). Journal of applied entomology. 138(9): 656-661.
Torres-Barragan, A., Lisnawita, L., Buhler, W. and Cardoza, Y., 2011. Studies on the entomopathogenicity and bacterial associates of the nematode Oscheius carolinensis. Biological Control, 59(2): 123-129.
Valizadeh, A., Goldasteh, S.H., Rafiei-Karahroodi, Z. and Pedram, M., 2017. The occurrence of three species of the genus Oscheius Andrássy, 1976 (Nematoda: Rhabditida) in Iran. Journal of Plant Protection Research, 57(3): 248-255. https://doi.org/10. 1515/jppr-2017-0035.
van der Linden, C.F.H., Fatouros, N.E. and Kammenga, J.E., 2022. The potential of entomopathogenic nematodes to control moth pests of ornamental plantings. Biological Control, 165, 104815.
van Niekerk, S. and Malan, A.P., 2015. Adjuvants to improve aerial control of the citrus mealybug Planococcus citri (Hemiptera: Pseudococcidae) using entomopathogenic nematodes. Journal of Helminthology, 89: 189-195.
White, G.F., 1927. A method for obtaining infective nematode larvae from cultures. Science Journal, 66: 302-303.
Yamanaka, S., Seta, K. and Yasuda, M., 1986. Evaluation of the use of entomogenous nematode, Steinernema feltiae (Str. Mexican) for the biological control of the fall webworm, Hyphantria cunea, (Lepidoptera: Arctiidae). Japanese Journal of Nematology, 16: 26-31.